Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Локализация функций организма в коре больших полушарий.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В коре большого мозга происходит анализ всех раздражений, которые поступают из окружающей внешней и внутренней среды. Наибольшее число афферентных импульсов поступает через ядра таламуса к клеткам третьего и четвертого слоев коры большого мозга. В коре большого мозга располагаются центры, регулирующие выполнение определенных функций. И.П. Павлов рассматривал кору большого мозга как совокупность корковых концов анализаторов. Под термином «анализатор» понимается сложный комплекс анатомических структур, который состоит из периферического рецепторного (воспринимающего) аппарата, проводников нервных импульсов и центра. Корковый конец анализатора – это не какая-либо строго очерченная зона. В коре большого мозга различают «ядро» сенсорной системы и «рассеянные элементы». Ядро- это участок расположения наибольшего количества нейронов коры, к которым приходят импульсы от структур периферического рецептора. Рассеянные элементы расположены вблизи ядра и на различных расстояниях от него. Если в ядре осуществляется высший анализ и синтез, то в рассеянных элементах – более простой. При этом зоны «рассеянных элементов» различных анализаторов не имеют четких границ и наслаиваются друг на друга. Рассмотрим локализацию ядер некоторых анализаторов.
Рис.12. Корковый центр общей чувствительности (чувствительный «гомункулюс»; из В. Пенфилда и И.Расмуссена)
Изображения на поперечном срезе мозга (на уровне постцентральной извилины) и относящиеся к ним обозначения показывают пространственное представительство поверхности тела в коре большого мозга. Моторные области. Впервые Фритч и Гитциг (1870) показали, что раздражение передней центральной извилины мозга (после 4) вызывает двигательную реакцию. В то же время признано, что двигательная область является анализаторной. Спереди от передней центральной извилины лежат премоторные поля 6 и 8. Они организуют не изолированные, а комплексные, координированные, стереотипные движения. Эти поля также обеспечивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры. В коре постцентральной извилины и верхней теменной дольки залегают ядра коркового анализатора проприоцептивной и общей чувствительности (температурной, болевой, осязательной) противоположной половины тела (рис.). При этом ближе к продольной щели мозга расположены корковые концы анализатора чувствительности нижних конечностей и нижних отделов туловища, а наиболее низко у латеральной борозды проецируются рецепторные поля верхних частей тела и головы.
Ядро двигательного анализатора находится главным образом в предцентральной извилине и парацентральной дольке на медиальной поверхности полушария («двигательная область коры»). В верхних участках предцентральной извилины и парацентральной дольки расположены двигательные центры мышц нижних конечностей и самых нижних отделов туловища. В нижней части у латеральной борозды находятся центры, регулирующие деятельность мышц лица и головы (рис. 12,13). Двигательные области каждого из полушарий взаимодействуют со скелетными мышцами противоположной стороны тела. Мышцы конечностей изолированно связаны с одним из полушарий, мышцы туловища, гортани и глотки – с двигательными областями обоих полушарий. В обоих описанных центрах величина проекционных зон различных органов зависит не от размеров последних, а от их функционального значения. Так, зона кисти в коре полушария большого мозга значительно больше, чем зоны туловища и нижней конечности, вместе взятые. И.П. Павлов называл двигательную область коры полушарий большого мозга рецепторной, так как в ней также происходит анализ проприоцептивных (кинетических) раздражений, воспринимаемых проприорецепторами, заложенными в скелетных мышцах, сухожилиях, фасциях и суставных капсулах. В области нижней теменной дольки, в надкраевой извилине, находится асимметричное (у правшей – в левом, а у левшей – только в правом полушарии) ядро двигательного анализатора, осуществляющее координацию всех целенаправленных сложных комбинированных движений.
Рис.13. Двигательная область коры (двигательный «гомункулюс»; из В. Пенфилда и И. Расмуссена). Изображение двигательного «гомункулюса» отражает относительные размеры областей представительства отдельных участков тела в коре предцентральной извилины большого мозга. Сенсорные области.
Корковые концы анализаторов имеют свою топографию и на них проецируются определенные афференты проводящих систем. Корковые концы анализаторов разных сенсорных систем перекрываются. Помимо этого, в каждой сенсорной системе коры имеются полисенсорные нейроны, которые реагируют не только на «свой» адекватный стимул, но и на сигналы других сенсорных систем. Кожная рецептирущая система, таламокортикальные пути проецируются на заднюю центральную извилину. Здесь имеется строгое саматотопическое деление. На верхние отделы этой извилины проецируются рецептивные поля кожи нижних конечностей, на среднее – туловища, на нижние отделы – руки, головы. На заднюю центральную извилину в основном проецируются болевая и температурная чувствительности. В коре теменной доли (поля 5 и 7), где также оканчиваются проводящие пути чувствительности, осуществляется более сложный анализ: локализация раздражения, дискриминация, стереогноз. Как указано выше, в коре верхней теменной дольки находится ядро кожного анализатора стереогнозии (узнавания предмета на ощупь). Корковый конец этого анализатора в каждом полушарии связан с противоположной верхней конечностью. При повреждениях коры более грубо страдают функции дистальных отделов конечностей, особенно рук. Зрительная система представлена в затылочной доле мозга: поля 17,18,19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качество предметов. Поражение поля 19 коры большого мозга приводит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при этом утрачивается также цветовая память). Ядро зрительного анализатора располагается на медиальной поверхности затылочной доли полушария большого мозга по обеим сторонам («по берегам») шпорной борозды. Ядро зрительного анализатора правого полушария связано проводящими путями с латеральной половиной сетчатки правого глаза и медиальной половиной сетчатки левого глаза, левого с латеральной половиной сетчатки левого и медиальной половиной сетчатки правого глаза. Слуховая система проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42,52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел. В глубине латеральной борозды, на обращенной к островку поверхностной средней части верхней височной извилины, находится ядро слухового анализатора (извилины Гешля). К каждому из полушарий подходят проводящие пути от рецепторов органа слуха как левой, так и правой сторон, поэтому одностороннее поражение этого ядра не вызывает полной утраты способности воспринимать звуки. Обонятельная система проецируется в области переднего конца гиппокампальной извилины (после 34). Кора этой области имеет не шести -, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния). Корковый конец обонятельного анализатора – это крючок, а также старая и древняя кора. Старая кора располагается в области гиппокампа и зубчатой извилины, древняя – в области переднего продырявленного пространства, прозрачной перегородки и обонятельной извилины. Благодаря близкому расположению ядер обонятельного и вкусового анализаторов чувства обоняния и вкуса тесно связаны между собой.
Кроме того, в нижних отделах постцентральной извилины также расположена часть ядра вкусового анализатора. Вкусовая система проецируется в гиппокампальной извилине по соседству с обонятельной областью коры (поле 43). Ядра вкусового и обонятельного анализаторов обоих полушарий связаны проводящими путями с рецепторами как левой, так и правой сторон. Описанные корковые концы анализаторов осуществляют анализ и синтез сигналов, поступающих из внешней и внутренней среды организма, составляющих первую сигнальную систему действительности (И.П. Павлов). В отличие от первой, вторая сигнальная система имеется только у человека и тесно связана с развитием членораздельной речи. Раздражителем II сигнальной системы является слово и его смысловое значение. Ассоциативные области Все сенсорные проекционные зоны и моторная область коры занимают менее 20% поверхности коры большого мозга. Остальная кора составляет ассоциативную область. Каждая ассоциативная область коры связана мощными связями с несколькими проекционными областями. Считают, что в ассоциативных областях происходит ассоциация разносенсорной информации. В результате формируются сложные элементы сознания. У человека, как и у других млекопитающих, в новой коре имеются обширные участки, которые не являются корковыми центрами чувствительных или двигательных функций (неспецифические, или ассоциативные, области), но площадь их значительно превышает площадь двигательных и чувствительных центров. Ассоциативные области обеспечивают слабо развитые связи между чувствительными и двигательными центрами и, что наиболее важно, являются морфологическим субстратом психической деятельности (сознания, мышления, памяти, эмоций). В первую очередь это относится к лобным долям. Лобные доли играют важнейшую роль и в разработке стратегии поведения человека. Ассоциативная кора теменных и височных долей участвует в формировании речи, в восприятии и оценке расположения собственного тела и его частей в пространстве, а также трехмерного пространственного внешнего мира. Ассоциативные области мозга у человека наиболее выражены в лобной, теменной и височной долях. Каждая проекционная область коры окружена ассоциативными областями. Нейроны этих областей чаще полисенсорны, обладают большими способностями к обучению. Так, в ассоциативном зрительном поле 18 число нейронов, «обучающихся» условно-рефлекторной реакции на сигнал, составляет более 60% от числа фоновоактивных нейронов. Для сравнения: таких нейронов в проекционном поле 17 всего 10- 12 %.
Повреждение поля 18 приводит к зрительной агнозии. Больной видит, обходит предметы, но не может их назвать. Полисенсорность нейронов ассоциативной области коры обеспечивает их участие в интеграции сенсорной информации, взаимодействии сенсорных и моторных областей коры. В теменной ассоциативной области коры формируются субъективные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря сопоставлению соматосенсорной, проприоцептивной и зрительной информации. Лобные ассоциативные поля имеют связи с лимбическим отделом мозга и участвуют в организации программ действия при реализации сложных двигательных поведенческих актов. Первой наиболее характерной чертой ассоциативных областей коры является мультисенсорность их нейронов, причем сюда поступает не первичная, а достаточно обработанная информация с выделением биологической значимости сигнала. Это позволяет формировать программу целенаправленного поведенческого акта. Вторая особенность ассоциативной области коры заключается в способности к пластическим перестройкам в зависимости от значимости поступающей сенсорной информации. Третья особенность ассоциативной области коры проявляется в длительном хранении следов сенсорных воздействий. Разрушение ассоциативной области коры приводит к грубым нарушениям обучения, памяти. Речевая функция связана как с сенсорной, так и с двигательной системами. Речь и мышление человека осуществляются при участии всей коры. В то же время в коре полушарий большого мозга человека имеются зоны, являющиеся центрами целого ряда специальных функций, связанных с речью. Ядро двигательного анализатора артикуляции речи, или речедвигательный анализатор, располагается в задних отделах нижней лобной извилины (центр Брока, поле 44, чаще левого полушария, был описан Даксом (1835), а затем Брока) вблизи отделов предцентральной извилины, которые являются анализаторами движений, производимых при сокращении мышц головы и шеи. Ядро слухового анализатора устной речи тесно связано с корковым центром слухового анализатора и также располагается в области верхней височной извилины левого полушария (поле 22), в ее задних отделах на поверхности, обращенной в сторону латеральной борозды полушария большого мозга. Его функция состоит в координации слухового восприятия и понимания речи другого человека и контроле собственной речи. Этот центр был описан Вернике (1874). Моторный и слуховой центры речи связаны между собой мощным пучком аксонов. Речевые функции, связанные с письменной речью, - чтение, письмо – регулируются ангулярной извилиной зрительной области коры левого полушария мозга (поле 39). Ядро двигательного анализатора произвольных движений, связанных с письмом, расположено в заднем отделе средней лобной извилины вблизи участков коры предцентральной извилины, контролирующих движение руки и сочетанный поворот головы и глаз в противоположную сторону. В речедвигательном анализаторе осуществляется анализ движений всех мышц, участвующих в акте членораздельной речи (произношение слов и предложений). В центре нижней лобной извилины находится ядро речевого анализатора, связанного с пением.
В средней трети верхней височной извилины находится корковый конец слухового анализатора, который относится к центрам второй сигнальной системы, воспринимающим словесное обозначение предметов, действий, явлений, т.е. воспринимающие сигналы сигналов. Вблизи ядра зрительного анализатора находится ядро зрительного анализатора письменной речи, расположенное в угловой извилине нижней теменной дольки. Речевые анализаторы у правшей локализуются лишь в левом полушарии, а у левшей – только в правом. При поражении моторного центра речи развивается моторная афазия, в этом случае больной понимает речь, но сам говорить не может. При поражении слухового центра речи больной может говорить, излагать устно свои мысли, но не понимает чужой речи, слух сохранен, но больной не узнает слов. Такое состояние называется сенсорной слуховой афазией. Больной часто говорит (логорея), но речь его неправильная (аграмматизм), наблюдается замена слогов, слов (парафазии). Поражение зрительного центра речи приводит к невозможности чтения, письма. Изолированное нарушение письма – аграфия, возникает также в случае расстройства функции задних отделов второй лобной извилины левого полушария. В височной области расположено после 37, которое отвечает за запоминание слов. Больные с поражениями этого поля не помнят название предметов. Они напоминают забывчивых людей, которым необходимо подсказывать нужные слова. Больной, забыв название предмета, помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают этим предметом, но назвать его не может. Распределение функций по областям мозга не является абсолютным. Установлено, что практически все области мозга имеют полисенсорные нейроны, т.е. нейроны, реагирующие на различные раздражения. Например, при повреждении поля 17 зрительной области его функцию могут выполнять поля 18 и 19. Кроме того, разные двигательные эффекты раздражения одного и того же двигательного пункта коры наблюдаются в зависимости от текущей моторной деятельности. Если операцию удаления одной из зон коры провести в раннем детском возрасте, когда распределение функций еще не жестко закреплено, функция утраченной области практически полностью восстанавливается, т.е. в коре имеются проявления механизмов динамической локализации функций, позволяющих компенсировать функционально и анатомически нарушенные структуры. Следовые процессы в спинном мозге после его раздражения сохраняются в течение секунды; в подкорково – стволовых отделах (в форме сложных двигательно-координаторных актов, доминантных установок, эмоциональных состояний) длятся часами; в коре мозга следовые процессы могут сохраняться по принципу обратной связи в течение всей жизни. Это свойство придает коре исключительное значение в механизмах ассоциативной переработки и хранения информации, накопления базы знаний. Сохранение следов возбуждения в коре проявляется в колебаниях уровня ее возбудимости; эти циклы длятся в двигательной области коры 3-5 минут, в зрительной – 5-8 минут. Основные процессы, происходящие в коре, реализуются двумя состояниями: возбуждением и торможением. Эти состояния всегда реципрокны. Они возникают, например, в пределах двигательного анализатора, что всегда наблюдается при движениях; они могут возникать и между разными анализаторами. Тормозное влияние одного анализатора на другие обеспечивает сосредоточенность внимания на одном процессе. Отношение между возбуждением и торможением в коре проявляется в форме так называемого латерального торможения. При латеральном торможении вокруг зоны возбуждения формируется зона заторможенных нейронов (одновременная индукция) и она по протяженности, как правило, в два раза больше зоны возбуждения. Латеральное торможение обеспечивает контрастность восприятия, что в свою очередь позволяет идентифицировать воспринимаемый объект. Помимо латерального пространственного торможения, в нейронах коры после возбуждения всегда возникает торможение активности и наоборот, после торможения – возбуждение – так называемая последовательная индукция. В тех случаях, когда торможение не в состоянии сдерживать возбудительный процесс в определенной зоне, возникает иррадиация возбуждения по коре. Иррадиация может происходить от нейрона к нейрону, по системам ассоциативных волокон 1 слоя, при этом она имеет очень малую скорость – 0,5-2,0 м/с. В другом случае иррадиация возбуждения возможна за счет аксонных связей пирамидных клеток 3 слоя коры между соседними структурами, в том числе между разными анализаторами. Иррадиация возбуждения обеспечивает взаимоотношение состояний систем коры при организации условнореф-лекторного и других форм поведения. Наряду с иррадиацией возбуждения, которое происходит за счет импульсной передачи активности, существует иррадиация состояния торможения по коре. Механизм иррадиации торможения заключается в переводе нейронов в тормозное состояние под влиянием импульсов, приходящих из возбужденных участков коры, например, из симметричных областей полушарий.
Лимбическая система Одним из проявлений психической деятельности человека являются эмоции. Наиболее обоснована информационная теория эмоций, разработанная П.В.Симоновым, который определил эмоцию как отражение какой-либо актуальной потребности (с учетом ее качества и величины) и вероятности (или возможности) ее удовлетворения, которую субъект оценивает в данный момент на основе врожденного и ранее приобретенного индивидуального опыта. Американский физиолог У.Кэннон (1935) пришел к выводу о том, что поток возбуждения, возникающего при действии эмоциональных стимулов, в таламусе расщепляется на две части: к коре, что обусловливает субъективное проявление эмоций (например, ощущение страха или уверенности), и к гипоталамусу, что сопровождается характерными для эмоций вегетативными сдвигами. Позже эти представления были уточнены в связи с обнаружением роли лимбической системы мозга в формировании эмоций. Лимбическая система представляет собой функциональное объединение структур мозга, участвующих в организации эмоционально-мотивационного поведения, таких как пищевой, половой, оборонительный инстинкты. Эта система участвует в организации цикла бодрствование-сон. Лимбическая система как филогенетически древнее образование оказывает регулирующее влияние на кору большого мозга и подкорковые структуры, устанавливает необходимое соответствие уровней их активности. Структуры лимбической системы включают в себя 3 комплекса. Первый комплекс – древняя кора, обонятельные луковицы, обонятельный бугорок, прозрачная перегородка (рис.14). Вторым комплексом структур лимбической системы является старая кора, куда входят гиппокамп, зубчатая фасция, поясная извилина. Третий комплекс лимбической системы – структуры островковой коры, парагиппокамповая извилина. И, наконец, в лимбическую систему включают подкорковые структуры: миндалевидные тела, ядра прозрачной перегородки, переднее таламическое ядро, сосцевидные тела.
Рис.14. Структуры лимбической системы головного мозга. 1–обонятельная луковица, 2–обонятельный тракт, 3–обонятельный треугольник, 4–поясная извилина, 5–серый покров, 6–свод, 7–перешеек поясной извилины, 8–терминальная полоска, 9–парагиппокампальная извилина, 10–мозговая полоска таламуса, 11–гиппокамп, 12–сосцевидное тело, 13–миндалевидное тело, 14–крючок, 15–паратерминальная извилина.
Особенностью лимбической системы является то, что между ее структурами имеются простые связи и сложные пути, образующие множество замкнутых кругов. Такая организация создает условия для длительного циркулирования одного и того же возбуждения в системе и тем самым для сохранения в ней единого состояния и навязывание этого состояние другим системам мозга. В настоящее время хорошо известны связи между структурами мозга, организующие круги, имеющие свою функциональную специфику. К ним относится круг Пейпеса (гиппокамп → сосцевидные тела → передние ядра таламуса → кора поясной извилины → парагиппокампова извилина → гиппокамп). Этот круг имеет отношение к памяти и процессам обучения. Другой круг (миндалевидное тело → гипоталамус → мезэнцефальные структуры → миндалевидное тело) регулирует агрессивно-оборонительные, пищевые и сексуальные формы поведения. Считается, что образная (иконическая) память формируется кортико-лимбико-таламо-кортикальным кругом. Круги разного функционального назначения связывают лимбическую систему со многими структурами центральной нервной системы, что позволяет последней реализовать функции, специфика которых определяется включенной дополнительной структурой. Например, включение хвостатого ядра в один из кругов лимбической системы определяет ее участие в организации тормозных процессов высшей нервной деятельности. Большое количество связей в лимбической системе, своеобразное круговое взаимодействие ее структур создают благоприятные условия для реверберации возбуждения по коротким и длинным кругам. Это, с одной стороны, обеспечивает функциональное взаимодействие частей лимбической системы, с другой - создает условия для запоминания. Обилие связей лимбической системы со структурами центральной нервной системы затрудняет выделение функций мозга, в которых она не принимала бы участия. Так, лимбическая система имеет отношение к регулированию уровня реакции автономной, соматической систем при эмоционально-мотивационной деятельности, регулированию уровня внимания, восприятия, воспроизведения эмоционально значимой информации. Лимбическая система определяет выбор и реализацию адаптационных форм поведения, динамику врожденных форм поведения, поддержание гомеостаза, генеративных процессов. Наконец, она обеспечивает создание эмоционального фона, формирование и реализацию процессов высшей нервной деятельности. Нужно отметить, что древняя и старая кора лимбической системы имеют прямое отношение к обонятельной функции. В свою очередь обонятельный анализатор, как самый древний из анализаторов, является неспецифическим активатором всех видов деятельности коры большого мозга. Некоторые авторы называют лимбическую систему висцеральным мозгом, т. е. структурой ЦНС, участвующей в регуляции деятельности внутренних органов. И действительно, миндалевидные тела, прозрачная перегородка, обонятельный мозг при их возбуждении изменяют активность вегетативных систем организма в соответствии с условиями окружающей среды. Это стало возможно благодаря установлению морфологических и функциональных связей с более молодыми образованиями мозга, обеспечивающими взаимодействие экстероцептивных, интероцептивных систем и коры височной доли. Гиппокамп (hippocampus) расположен в глубине височных долей мозга и является основной структурой лимбической системы. Морфологически гиппокамп представлен стереотипно повторяющимися модулями, связанными между собой и с другими структурами. Модульное строение обусловливает способность гиппокампа генерировать высокоамплитудную ритмическую активность. Связь модулей создает условие циркулирования активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических потенциалов, увеличиваются нейросекреция клеток гиппокампа, число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Многочисленные связи гиппокампа со структурами как лимбической системы, так и других отделов мозга определяют его многофункциональ- ность. Выраженными и специфическими являются электрические процессы в гиппокампе. Активность здесь чаще всего характеризуется быстрыми бета-ритмами (14-30 в секунду) и медленными тета-ритмами (4-7 в секунду). Значение тета-ритма заключается в том, что он отражает реакцию гиппокампа, а тем самым - его участие в ориентировочном рефлексе, реакциях настороженности, повышения внимания, в динамике обучения. Тета-ритм в гиппокампе наблюдается при высоком уровне эмоционального напряжения -страхе, агрессии, голоде, жажде. Вызванная активность в гиппокампе возникает на раздражение различных рецепторов и любой из структур лимбической системы. Разносенсорные проекционные зоны в гиппокампе перекрываются. Это обусловлено тем, что большинство нейронов гиппокампа характеризуется полисенсорностью, т.е. способностью реагировать на световые, звуковые и другие виды раздражений. Нейроны гиппокампа отличаются выраженной фоновой активностью. В ответ на сенсорное раздражение реагирует до 60% нейронов гиппокампа. Особенность строения гиппокампа, взаимосвязанные модули обусловливают цикл генерирования возбуждения в нем, что выражается в длительной реакции (до 12 с)нейронов на однократный короткий стимул. Повреждение гиппокампа ведет к снижению эмоциональности, инициативности, замедлению скорости основных нервных процессов, повышаются пороги вызова эмоциональных реакций.
7. Межполушарные взаимоотношения Взаимоотношение полушарий большого мозга определяется как функция, обеспечивающая специализацию полушарий, облегчение выполнения регуляторных процессов, повышение надежности управления деятельностью органов, систем органов и организма в целом. Роль взаимоотношений полушарий большого мозга наиболее четко проявляется при анализе функциональной межполушарной асимметрии. Асимметрия в функциях полушарий впервые была обнаружена в 19веке, когда обратили внимание на различные последствия повреждения левой и правой половины мозга. В 1836 г. Марк Дакс выступил на заседании медицинского общества в Монпелье (Франция) с небольшим докладом о больных, страдающих потерей речи- состояния, известного специалистам под названием афазии. Дакс заметил связь между потерей речи и поврежденной стороной мозга. В его наблюдениях более чем у 40 больных с афазией имелись признаки повреждения левого полушария. Ученому не удалось обнаружить ни одного случая афазии при повреждении только правого полушария. Суммировав эти наблюдения Дакс сделал следующее заключение: каждая половина мозга контролирует свои, специфические функции; речь контролируется левым полушарием. Его доклад не имел успеха. Спустя некоторое время после смерти Дакса, Брока при посмертном исследовании мозга больных, страдающих потерей речи и односторонним параличом, отчетливо выявил в обеих случаях очаги повреждения, захватившие части левой лобной доли. С тех пор эта зона стала известна как зона Брока; она была им определена как область в задних отделах нижней лобной извилины. Проанализировав связь между предпочтением одной из двух рук и речью, он предположил, что речь, большая ловкость в движениях правой руки связаны с превосходством левого полушария у праворуких. Через 10 лет после публикации наблюдений Брока концепция, известная теперь как концепция доминантности полушарий, стала основной точкой зрения на взаимоотношения двух полушарий мозга. В 1864 г. английский невролог Джон Джексон писал: «Не так давно редко кто сомневался в том, что оба полушария одинаковы как в физическом, так и в функциональном плане, но теперь, когда благодаря исследованиям Дакса, Брока и других стало ясно, что повреждение одного полушария может вызвать у человека полную потерю речи, прежняя точка зрения стала несостоятельной». Д. Джексон выдвинул идею о «ведущем» полушарии, которую можно рассматривать как предшественницу концепции доминантности полушарий. «Два полушария не могут просто дублировать друг друга, - писал он, - если повреждение только одного из них может привести к потере речи. Для этих процессов (речи), выше которых ничего нет, наверняка должна быть ведущая сторона». Далее Джексон сделал вывод о том, " что у большинства людей ведущей стороной мозга является левая сторона так называемой воли, и что правая сторона является автоматической" К 1870 г. и другие исследователи стали понимать, что многие типы расстройств речи могут быть вызваны повреждением левого полушария. К. Вернике нашел, что больные при повреждении задней части височной доли левого полушария часто испытывали затруднения и в понимании речи. У некоторых больных при повреждении левого, а не правого полушария обнаруживались затруднения при чтении и письме. Считалось также, что левое полушарие управляет и «целенаправленными движении-ями». Совокупность этих данных стала основой представления о взаимоотношении двух полушарий. Одно полушарие (у праворуких обычно левое) рассматривалось как ведущее для речи и других высших функций, другое (правое), или «второстепенное», считали находящимся под контролем «доминантного» левого. Выявленная первой речевая асимметрия полушарий мозга предопределила представление об эквипотенциальности полушарий большого мозга детей до появления речи. Считается, что асимметрия мозга формируется при созревании мозолистого тела. Концепция доминантности полушарий, согласно которой во всех гностических и интеллектуальных функциях ведущим у «правшей» является левое полушарие, а правое оказывается «глухим и немым», просущест-вовала почти столетие. Однако постепенно накапливались свидетельства, что представление о правом полушарий как о второстепенном, зависимом, не соответствует действительности. Так у больных с нарушениями левого полушария мозга хуже выполняются тесты на восприятие форм и оценку пространственных взаимосвязей, чем у здоровых. Почти одновременно с распространением концепции доминантности полушарий стали появляться данные, указывающие на то, что правое или второстепенное, полушарие, также обладает своими особыми способнос-тями. Так, Джексон выступил с утверждением о том, что в задних долях правого мозга локализована способность к формированию зрительных образов. Почти одновременно с распространением концепции доминантности полушарий стали появляться данные, указывающие на то, что правое, или второстепенное полушарие также обладает своими особыми способностями. Повреждение левого полушария приводит, как правило, к низким показателям по тестам на вербальные способности. В то же время больные с повреждением правого полушария обычно плохо выполняли невербальные тесты, включавшие манипуляции с геометрическими фигурами, сборку головоломок, восполнение недостающих частей рисунков или фигур и другие задачи, связанные с оценкой формы, расстояния и пространственных отношений. Обнаружено, что повреждение правого полушария часто сопровождалось глубокими нарушениями ориентации и сознания. Такие больные плохо ориентируются в пространстве, не в состоянии найти дорогу к дому, в котором прожили много лет. С повреждением правого полушария были связаны также определенные виды агнозий, т.е. нарушенний в узнавании или восприятии знакомой информации, восприятии глубины и пространственных взаимоотношений. Одной из самых интересных форм агнозии является агнозия на лица. Больной с такой агнозией не способен узнать знакомого лица, а иногда и вообще не может отличать людей друг от друга. Узнавание других ситуаций и объектов, например, может быть при этом не нарушено. Дополнительные сведения, указывающие на специализацию правого полушария, были получены при наблюдении за больными, страдающими тяжелыми нарушениями речи, у которых, однако, часто сохраняется способность к пению. Кроме того, в клинических сообщениях содержались данные о том, что повреждение правой половины мозга может привести к утрате музыкальных способностей, не затронув речевых. Это расстройство, называемое амузией, чаще всего отмечалось у профессиональных музыкантов, перенесших инсульт или другие повреждения мозга. После того как нейрохирурги осуществили серию операций с комиссуротомией и были выполнены психологические исследования на этих больных, стояло ясно, что правое полушарие обладает собственными высшими гностическими функциями. Существует представление, что межполушарная асимметрия в решающей мере зависит от функционального уровня переработки информации. В этом случае решающее значение придается не характеру стимула, а особенностям гностической задачи, стоящей перед наблюдателем. Принято считать, что правое полушарие специализировано в переработке информации на образном функциональном уровне, левое – на категориальном. Применение такого подхода позволяет снять ряд трудноразрешимых противоречий. Так, преимущество левого полушария, обнаруженное при чтении нотных и пальцевых знаков, объясняется тем, что эти процессы протекают на категориальном уровне переработки информации. Сравнение слов без их лингвистического анализа успешнее осуществляется при их адресации правой гемисфере, поскольку для решения этих задач достаточна переработка информации на образном функциональном уровне. Межполушарная асимметрия зависит от функционального уровня переработки информации: левое полушарие обладает способностью к переработке информации, как на семантическом, так и на перцептивном функциональных уровнях, возможности правого полушария ограничиваются перцептивным уровнем. В случаях латерального предъявления информации можно выделить три способа межполушарных взаимодействий, проявляющихся в процессах зрительного опознания. 1.Параллельная деятельность. Каждое полушарие перерабатывает информацию с использованием присущих ему механизмов. 2.Избирательная деятельность. Информация перерабатывается в «компетентном» полушарии. 3.Совместная деятельность. Оба полушария уч
|
|||||||||
Последнее изменение этой страницы: 2017-01-20; просмотров: 1006; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.93.13 (0.015 с.) |