Бекенштейн вычисляет энтропию черной дыры 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Бекенштейн вычисляет энтропию черной дыры



Мысль Бекенштейна о том, что черные дыры обладают энтропией, то есть, иными словами, несмотря на свою безволосость, содержат скрытую информацию, оказалась одним из тех простых, но глубоких суждений, которые одним махом меняют ситуацию в физике. Когда я начинал писать книги для широкой публики, мне настоятельно советовали ограничиться одной-единственной формулой: E = mc2. Мне говорили, что с каждым дополнительным уравнением продажи книги будут падать на десять тысяч экземпляров. Если честно, это противоречит моему опыту. Так что после долгих колебаний я решил пойти на риск. Доказательство Бекенштейна столь необычайно простое и красивое, что отказ от него обесценил бы эту книгу. Тем не менее я приложил усилия и разъяснил результаты так, чтобы менее склонные к математике читатели могли спокойно пропустить несколько простых формул, не теряя понимания сути.

Бекенштейн не ставил впрямую вопрос о том, сколько битов можно скрыть внутри черной дыры данного размера. Вместо этого он задался вопросом о том, как изменится размер черной дыры, если сбросить в нее один бит информации. Это похоже на вопрос о том, насколько поднимется уровень воды в ванне, если добавить в нее одну каплю воды. Точнее даже: насколько он поднимется при добавлении одного атома?

Сразу возник другой вопрос: а как добавить один бит? Может быть, для этого Бекенштейну надо бросить в черную дыру одну точку, напечатанную на клочке бумаги? Очевидно, нет; точка состоит из огромного числа атомов, и то же самое относится к бумаге. Поэтому в точке содержится куда больше одного бита информации. Лучший подход — это вбросить одну элементарную частицу.

Предположим, например, что в черную дыру падает одиночный фотон. Даже один фотон может нести более одного бита информации. В частности, масса информации содержится в координатах точки, где фотон пересекает горизонт. Здесь Бекенштейн ловко применил гейзенберговскую концепцию неопределенности. Он посчитал, что положение фотона должно быть максимально неопределенным, лишь бы только он попадал в черную дыру. Такой «неопределенный фотон» несет лишь один бит информации, а именно находится ли он где-то внутри черной дыры.

Если помните, в главе 4 говорилось о том, что разрешающая способность светового луча не превышает длины его волны. В данном случае Бекенштейн не собирался рассматривать детали на горизонте; наоборот, горизонт должен был выглядеть максимально размытым. Хитрость была в том, чтобы использовать такой длинноволновый фотон, чтобы он распределился по всему горизонту. Иными словами, если горизонт имеет шварцшильдовский радиус то фотон должен иметь такую же длину волны. Кажется, что можно использовать и более длинные волны, но такие фотоны будут отскакивать от черной дыры, а не захватываться ею.

Бекенштейн подозревал, что добавление лишнего бита к черной дыре вызовет прирост ее размера, пусть и очень небольшой, подобно тому как добавление лишней молекулы резины к воздушному шарику ненамного его увеличит. Однако для вычисления этого прироста требуется несколько промежуточных шагов. Давайте сначала бегло с ними ознакомимся.

1. Первым делом надо узнать, насколько увеличится энергия черной дыры при добавлении одного бита информации.

2. Далее нужно определить, насколько изменится масса черной дыры с добавлением лишнего бита. Для этого вспомним знаменитую формулу Эйнштейна:

E = mc2

Однако нам понадобится обратить ее, что позволит узнать изменение массы по величине добавленной энергии.

3. Когда масса определена, можно вычислить изменение шварцшильдовского радиуса, используя ту же формулу, которую вывели Митчел, Лаплас и Шварцшильд (см. главу 2):

Rs = 2MG/c2

4. Наконец, надо определить прирост площади горизонта. Для этого нужна формула площади сферы:

Площадь горизонта = 4πRs2.

Начнем с энергии однобитного фотона. Как я уже объяснял, фотон должен иметь достаточно большую длину волны, чтобы его положение внутри черной дыры было неопределенным. Это значит, что длина волны должна быть Rs. Согласно Эйнштейну, фотон с длиной волны Rs имеет энергию E, определяемую следующей формулой:[72]

Е = hc/Rs.

В этой формуле h — постоянная Планка, а с — скорость света. Из нее следует, что сбрасывание в черную дыру одного бита информации добавляет ей энергию величиной hc/Rs.

Следующий шаг — это расчет изменения массы черной дыры. Для пересчета энергии в массу ее надо разделить на с2, а значит, масса черной дыры возрастет на величину h/Rsc:

Изменение массы = h/Rsc.

Подставим в эту формулу числа, чтобы увидеть, сколько же добавит один бит к массе черной дыры, имеющей массу Солнца.

Постоянная Планка, h = 6,6x10-34

Шварцшильдовский радиус черной дыры, Rs = 3000 м

Скорость света, с = 3х108

Гравитационная постоянная, G = 6,7х10-11

Таким образом, один бит информации добавляет к черной дыре солнечной массы поразительно малую величину:

Прирост массы = 10-45 килограмма.

И все же, как говорится, «это больше, чем ничто»[73].

Перейдем к третьему шагу: используем связь между массой и радиусом для вычисления изменения Rs. В алгебраической форме ответ будет таким:

Прирост Rs = 2hG / (Rs с3).

У черной дыры солнечной массы Rs составляет около 3000 м. Если подставить все числа, то окажется, что радиус увеличится на 10-72 м. Это не только безмерно меньше протона, но также безмерно меньше планковской длины (10-35 м). При таком малом изменении непонятно, зачем мы вообще это вычисляем, но было бы ошибкой пренебречь этой малостью.

Последний шаг состоит в определении того, насколько изменится площадь горизонта. Для черной дыры солнечной массы прирост площади горизонта составляет около 10-70 квадратного метра. Это очень малая величина, но опять, «это больше, чем ничто». И не просто больше, чем ничто, а нечто совершенно особое: 10-70 м2, оказывается, как раз равняется одной квадратной планковской единице.

Это случайное совпадение? Что получится, если взять черную дыру земной массы (размером с клюквину) или черную дыру в миллиард раз массивнее Солнца? Попробуйте — с числами или с формулами. Каков бы ни был исходный размер черной дыры, всегда выполняется правило:

Добавление одного бита информации увеличивает площадь горизонта любой черной дыры на одну планковскую единицу площади, или на одну квадратную планковскую единицу.

Каким-то образом в принципах квантовой механики и общей теории относительности скрыта загадочная связь между невидимыми битами информации и кусочками площади планковского размера.

Когда я объяснил все это на своем подготовительном курсе по физике в Стэнфорде, кто-то на заднем ряду протяжно присвистнул и произнес: «Кру-у-уто». Это действительно круто, а еще глубоко и, вероятно, содержит ключ к загадке квантовой гравитации.

Теперь представьте формирование черной дыры бит за битом, так же как можно наполнять ванну атом за атомом. Каждый раз при добавлении бита информации площадь горизонта прирастает на одну планковскую единицу. К тому времени, когда черная дыра будет готова, площадь ее горизонта окажется равной общему числу битов скрытой в ней информации. Так что главное достижение Бекенштейна можно суммировать тезисом:

Энтропия черной дыры, измеренная в битах, пропорциональна площади ее горизонта, измеренной в планковских единицах.

Или, еще более кратко:

Информация равна площади.

Это выглядит почти так, как если бы горизонт был плотно покрыт несжимаемыми битами информации; сходным образом можно плотно покрывать столешницу монетами.

При добавлении новых монет площадь, занятая всеми монетами вместе, будет расти. Биты, монеты — принцип один и тот же.

Единственная проблема с этой иллюстраций заключается в том, что на горизонте нет монет. Будь они там, Алиса обнаружила бы их, падая в черную дыру. Согласно общей теории относительности, для свободно падающей Алисы горизонт — это невидимая точка невозврата. Сама возможность для нее встретить что-то вроде стола с монетами прямо противоречит эйнштейновскому принципу эквивалентности.

Этот конфликт — очевидная несовместимость между представлением о горизонте как о поверхности, плотно заполненной материальными битами, и как о точке невозврата — и стал казус белли для Битвы при черной дыре.

Другой момент, озадачивающий физиков с момента открытия Бекенштейна: почему энтропия пропорциональна площади горизонта, а не внутреннему объему черной дыры? Кажется, что внутри пропадает огромное количество места. Фактически черная дыра ужасно похожа на Птолемееву библиотеку. Мы еще вернемся к этому вопросу в главе 18, где увидим, что весь мир — это голограмма.

Хотя Бекенштейн пришел к правильному выводу — энтропия черной дыры действительно пропорциональна площади, его доказательство не было идеально строгим, и он об этом знал. Он не говорил, что энтропия равна площади, измеренной в планковских единицах. Из-за ряда неопределенностей в его выкладках он мог лишь утверждать, что энтропия черной дыры примерно равна (или пропорциональна) ее площади. В физике слово «примерно» — очень ненадежное. Означает оно удвоенную площадь или четверть площади? Хотя доказательство Бекенштейна и было блестящим, оно не позволяло точно определить коэффициент пропорциональности.

В следующей главе мы увидим, как открытие Бекенштейном энтропии черных дыр привело Стивена Хокинга к величайшему озарению: черные дыры обладают не только энтропией, как совершенно верно догадался Бекенштейн, но у них также есть и температура. Это не бесконечно холодные, мертвые объекты, какими физики их себе представляли. Черные дыры высвечивают свою внутреннюю теплоту, но в итоге эта теплота приводит к их гибели.

9
Черный свет

Зимний ветер отвратителен в больших городах. Он свищет вдоль длинных улиц между плоскими фасадами домов, завихряется вокруг углов, безжалостно бичуя несчастных пешеходов. В один ненастный день в 1974 году я отправился на длинную пробежку по обледенелым улицам Манхэттена. Пар от дыхания оседал сосульками на моих длинных волосах. Пробежав пятнадцать миль, я совершенно выдохся, но до теплого офиса, к сожалению, оставалось еще две мили. Без кошелька у меня не было даже двадцати центов, чтобы сесть на метро. Но тут мне улыбнулось счастье. Когда я сошел с тротуара где-то в районе Дикманстрит, рядом остановился автомобиль, и из него высунулась голова Оге Петерсена. Прелестный датчанин Оге, до того как перебраться в Соединенные Штаты, был ассистентом Нильса Бора в Копенгагене. Он обожал квантовую механику и жил и дышал боровской философией.

В машине Оге спросил, не иду ли я на лекцию Денниса Скиамы в Белферской школе? Я и не думал. На самом деле я ничего не знал о Скиаме и его лекции. Все мои мысли были о тарелке супа в университетском кафетерии. Оге познакомился со Скиамой в Англии и сказал, что это чрезвычайно забавный англичанин из Кембриджского университета, от которого можно ждать массы отличных шуток. Оге считал, что лекция Скиамы будет иметь отношение к черным дырам — об одной работе, выполненной его студентом, гудит весь Кембридж. Я пообещал Оге, что появлюсь.

Кафетерий университета Ешива не был местом в моем вкусе. Еда неплохая — суп был кошерным (что меня совершенно не волновало) и горячим (вот это было важно), однако разговоры между студентами меня тяготили: почти все они были о законе. Не о федеральном законе, не о законах штата или города и не о научных законах, это была мелочная казуистика, касающаяся талмудического закона, который занимал молодых студентов Ешивы: будет ли кошерной пепси-кола, если она произведена на заводе, который построен на месте бывшей свинофермы? А если земля была покрыта фанерой перед строительством завода? Такого рода были вопросы. Но горячий суп и холодная погода склонили меня к тому, чтобы расслабиться и послушать студентов за соседним столом. На этот раз разговор зашел о предмете, о котором даже я иногда забочусь, — о туалетной бумаге! Ожесточенная талмудическая полемика разгорелась вокруг исключительно важного вопроса: можно ли в шабат заменять в держателе рулон с туалетной бумагой или надо использовать бумагу прямо от неподвешенного рулона? Одна фракция, цитируя труды Рабби Акивы, высказывала предположение, что этот великий человек настаивал бы на строгом подчинении определенным законам, которые запрещают замену рулона. Другая фракция считала, что несравненный Рамбам[74] очень ясно выразил в «Путеводителе растерянных», что некоторые необходимые работы исключаются из талмудических запретов, а логический анализ склоняет к тому выводу, что замена туалетной бумаги является одной из таких работ. Спустя полчаса дискуссия все еще сохраняла остроту. В сражение вступили еще несколько молодых будущих раввинов с новыми весьма искусными, почти математическими аргументами, и я наконец, устал от этой полемики.

Вас может удивить, какое отношение все это имеет к теме данной книги, к черным дырам. Лишь одно: из-за отдыха в кафетерии я пропустил первые сорок минут блестящей лекции Денниса Скиамы.

Кембриджский университет, где Скиама был профессором астрономии и космологии, являлся одним из трех мест (помимо Принстона и Москвы[75]), где лучшие из лучших пробовали силу своего интеллекта на величайших загадках гравитации. Как и в Принстоне, его молодых интеллектуальных воинов возглавлял харизматичный вдохновенный лидер. Мальчики Скиамы были звездной командой блестящих молодых физиков, в число которых входили Брэндон Картер, сформулировавший антропный принцип в космологии, сэр Мартин Рис, королевский астроном Великобритании, занимающий ныне кафедру сэра Эдмонда Галлея (чье имя носит комета Галлея), Филип Канделас, ныне занимающий кафедру математики имени Роуза Болла в Оксфорде, Дэвид Дойч, один из изобретателей квантовых вычислений, и Джон Барроу, выдающийся кембриджский астроном. Ах да, был еще Стивен Хокинг, который ныне занимает кафедру Исаака Ньютона в Кембридже. На самом деле в тот холодный день 1974 года Деннис рассказывал именно о работе Стивена, но тогда имя Стивена Хокинга ничего для меня не значило.

К моменту моего прихода Скиама прочитал уже две трети своей лекции. Я сразу пожалел, что не появился раньше. Мне не улыбалось вновь бежать по обледенелым мостовым в своем спортивном костюме. Тем более что к концу лекции стемнело и, без сомнения, стало еще холоднее. Но было и нечто большее, чем страх обморожения, отчего мне хотелось бы, чтобы лекция еще только начиналась. Как и говорил Оге, Деннис был невероятно интересным докладчиком. Его шутки действительно были великолепны, но еще более я был поражен единственной формулой на доске.

Обычно к концу лекции по теоретической физике доска бывает заполнена математическими символами. Однако Скиама не злоупотреблял уравнениями. Когда я пришел, доска выглядела примерно так:

За пять минут я расшифровал смысл символов. Фактически это были стандартные обозначения хорошо знакомых физикам величин. Но я не знал контекста — что эта формула описывает, — хотя чувствовалось, что она или очень глубокая, или очень глупая. В нее входили только самые фундаментальные константы: гравитационная постоянная G, определяющая силу гравитации, была в знаменателе — довольно странное для нее место; скорость света с указывала на использование специальной теории относительности; постоянная Планка h намекала на квантовую механику; а еще была постоянная Больцмана k. Именно она казалась тут совершенно неуместной. Что, черт побери, она тут делает? Постоянная Больцмана связана с теплотой и микроскопической природой энтропии. Как попала энтропия в формулу квантовой гравитации?

А как же числа 16 и π2? Это математические величины, которые появляются во всех формулах. Они ни на что не указывают. Обозначением было знакомо, а слова Скиамы подтвердили мое первое впечатление: М — это масса. Через пять минут я был уверен, что это масса черной дыры.

О'кей, черные дыры, гравитация и относительность. Это имело смысл, однако добавление квантовой механики выглядело уже странна Черные дыры невероятно массивны — как звезды, из которых они возникают. Но квантовая механика занимается малыми объектами: атомами, электронами и фотонами. Каким образом она оказалась замешана в обсуждение столь тяжелых вещей, как звезды?

Более же всего сбивало с толку то, что в левой части уравнения стояла температура Т. Температура чего?

Последних пятнадцати или двадцати минут лекции Скиамы мне хватило, чтобы сложить вместе все элементы. Один из студентов Денниса открыл нечто очень странное: квантовая механика наделяет черные дыры тепловыми свойствами, и вместе с теплотой они обретают температуру. Уравнение на доске было формулой для вычисления температуры черной дыры.

Как странно, подумал я. Что привело Скиаму к идиотской идее, будто у мертвой звезды, звезды, которая полностью исчерпала запасы топлива, должна быть температура, отличная от абсолютного нуля?

Глядя на загадочную формулу, я видел интересные взаимосвязи: температура черной дыры была обратно пропорциональна ее массе; чем больше масса, тем меньше температура. Гигантские астрономические черные дыры, сопоставимые со звездами, должны иметь крошечную температуру, гораздо ниже, чем у любого объекта в любой земной лаборатории. Но настоящим сюрпризом, заставившим меня привстать с кресла, было то, что крошечные черные дыры, если они существуют, должны быть невероятно горячими — горячее всего, что мы можем вообразить.

У Скиамы был припасен и еще один сюрприз: черные дыры испаряются! До того времени физики считали, что черные дыры вечны, как бриллианты. Однажды образовавшуюся черную дыру невозможно уничтожить никаким известным физическим механизмом. Черная пустота в пространстве, образованная умершей звездой, будет существовать вечно — бесконечно холодная и бесконечно тихая.

Однако Скиама сказал нам, что, подобно капле воды, оставленной на солнце, черные дыры мало-помалу испаряются и в конце концов исчезают. Как он объяснил, электромагнитное тепловое излучение уносит часть массы черной дыры.

Чтобы объяснить, как Деннис со своим студентом пришли этой мысли, я должен познакомить вас с некоторыми фактами, касающимися тепла и теплового излучения. Я еще вернусь к черным дырам, но сначала сделаю отступление.

Тепло и температура

Тепло и температура относятся к числу самых известных физических понятий. У всех нас есть встроенный термостат. Эволюция обеспечила нас врожденным чувством холода и тепла.

Тепло — это наличие теплоты, холод — ее отсутствие. Но что за сущность такая — теплота? Что в ванне с горячей водой есть такого, что исчезает, когда ванна остывает? Если внимательно посмотреть в микроскоп, на крошечные пылинки или частицы пыльцы, взвешенные в теплой воде, то станет видно, что они пошатываются, как пьяные матросы. Чем горячее вода, тем более оживленными выглядят пылинки. В 1905 году Альберт Эйнштейн[76] объяснил это броуновское движение тем, что пылинки постоянно бомбардируются быстро движущимися энергичными молекулами. Вода, как и все вещества, состоит из молекул, снующих туда-сюда, врезающихся друг в друга, в стенки сосуда и в любые посторонние загрязнители. Когда это движение является случайным и хаотическим, мы называем его теплом. В обычных предметах добавление энергии в форме тепла вызывает увеличение случайных кинетических энергий молекул.

Температура, конечно, связана с теплотой. Когда беспорядочно движущиеся молекулы ударяют по вашей коже, они возбуждают нервные окончания, и вы чувствуете температуру. Чем больше энергия отдельных молекул, тем сильнее воздействие на нервные окончания и тем вам становится горячее. Ваша кожа — лишь один из множества типов термометров, которые могут воспринимать и регистрировать хаотические движения молекул.

Так что, грубо говоря, температура объекта — это мера энергии его отдельных молекул. Когда объект остывает, энергия уходит, и молекулы замедляются. В конце концов, если отводить все больше и больше энергии, молекулы достигают наинизшего энергетического состояния. Если игнорировать квантовую механику, то это случится, когда движение молекул полностью прекратится. В этом состоянии больше нет энергии, которую можно отвести, и объект будет находиться при абсолютном нуле. Ниже температуру опустить невозможно.

Черные дыры и черные тела

Большинство объектов отражают хотя бы немного света. Причина, по которой красная краска выглядит красной, состоит в том, что она отражает красный свет. Точнее, она отражает некоторое сочетание длин волн, которые глаз и мозг воспринимают как красное. Аналогично, синяя краска отражает сочетание, которое мы воспринимаем как синее. Снег белый, потому что поверхность ледяных кристаллов отражает все видимые цвета одинаково. (Единственное различие между снегом и зеркальным листом льда в том, что зернистая структура снега рассеивает свет по всем направлениям, разбивая отраженное изображение на тысячи крошечных фрагментов.) Но некоторые поверхности свет почти не отражают. Всякий свет, падающий на закопченное днище котелка, поглощается слоем копоти, нагревая черное покрытие, а в конечном счете и сам металл. Такие объекты мозг воспринимает как черные.

Физический термин для объекта, поглощающего абсолютно весь падающий свет, — черное тело[77]. Ко времени лекции Скиамы в моем университете в Нью-Йорке физики давно знали, что черные дыры — это черные тела. Лаплас и Митчел догадывались об этом в восемнадцатом веке, а шварцшильдовское решение эйнштейновских уравнений это доказало. Свет, попадающий под горизонт черной дыры, полностью поглощается. Горизонты черных дыр — чернейшие из черных объектов.

Но вот чего никто не знал до открытия Хокинга, это того, что черные дыры имеют температуру. Прежде, если спросить у физика: «Какая температура у черной дыры?» — первой реакцией, вероятно, было бы: «Черные дыры не имеют температуры». Вы могли бы возразить: «Ерунда. У всего есть температура». Небольшое размышление тогда привело бы к ответу: «О'кей, черные дыры не обладают теплотой, так что у них температура абсолютного нуля — наинизшая возможная». Фактически до Хокинга все физики утверждали, что черные дыры — это черные тела, но черные тела с нулевой абсолютной температурой.

Сегодня некорректно говорить, что черные дыры не испускают никакого света. Возьмите закопченный котелок, разогрейте его до нескольких сотен градусов, и он начнет светиться красным. Еще горячее — и свечение станет оранжевым, затем желтым и, наконец, ярким голубовато-белым. Любопытно, что, согласно определению физиков, Солнце является черным телом. Как странно, скажете вы: трудно вообразить что-то более далекое от черного, чем Солнце. И действительно, поверхность Солнца испускает огромное количество света, но она ничего не отражает. Это делает его для физика черным телом.

Охладите горячий котелок, и он станет светиться в невидимом инфракрасном свете. Даже самые холодные объекты испускают немного электромагнитного излучения, если только не находятся при абсолютном нуле.

Но излучение, испускаемое черными телами, — это не отраженный свет; оно порождается колебаниями и столкновениями атомов, и, в отличие от отраженного света, его цвет зависит от температуры тела.

То, что объяснил Деннис Скиама, было удивительно (и казалось в то время немного сумасшедшим). Он говорил, что черные дыры — это черные тела, но они не находятся при абсолютном нуле. Каждая черная дыра имеет температуру, зависящую от ее массы. И формула этой зависимости была на доске.

Он рассказал и еще об одной вещи, в некотором смысле самой поразительной. Раз черная дыра обладает теплотой и температурой, она должна испускать электромагнитное излучение — фотоны — точно так же, как и горячий черный котелок. Это означает, что она теряет энергию. Согласно эйнштейновской формуле Е = тс2, энергия и масса — это в действительности одно и то же. Так что если черная дыра теряет энергию, она также теряет и массу.

Вот мы и подошли к кульминационному пункту рассказанной Скиамой истории. Размер черной дыры — радиус ее горизонта — прямо пропорционален массе. Если масса убывает, значит, размер черной дыры уменьшается. Так что, излучая энергию, черная дыра съеживается, пока не станет размером не больше элементарной частицы, и тогда она исчезает. Согласно Скиаме, черные дыры испаряются, подобно лужам в летний день.

На протяжении всей лекции, по крайней мере той части, что я застал, Скиама ясно давал понять, что не он является автором этих открытий. «Стивен говорит то», «Стивен говорит это»… Но, несмотря на слова Денниса, к концу лекции у Меня сложилось впечатление, что безвестному студенту Стивену Хокингу просто посчастливилось оказаться в нужное время в нужном месте, чтобы попасть в исследовательский проект Денниса. Для известного физика обычное дело — многократно упоминать на лекции яркого студента. Была идея блестящей или безумной, для меня было естественно предполагать, что она исходит от более крупного ученого.

В тот вечер я был глубоко не прав с этим допущением. Мы с Оге и еще несколько преподавателей физического факультета позвали Денниса на ужин в замечательный итальянский ресторан в квартале «Маленькая Италия». За едой Деннис все рассказал нам о своем замечательном студенте.

На самом деле Стивен вовсе не был студентом. Когда Деннис говорил о «своем студенте Хокинге», это было примерно в том смысле, в котором гордый отец нобелевского лауреата может говорить «мой мальчик». К 1974 году Стивен был восходящей звездой в мире общей теории относительности. Он и Роджер Пенроуз сделали огромный вклад в эту науку. Лишь в силу моего глубокого Неведения я мог подумать о нем как об обычном студенте у знаменитого научного руководителя.

Под добрую итальянскую еду и отличное вино я слушал потрясающую историю, удивительнее всякого вымысла, о молодом гении, который прославился лишь после того, как у него выявили неизлечимое изнурительное заболевание. Блестящий, но невыразимо эгоцентричный и поверхностный аспирант — Деннис говорил, что его чаще можно было увидеть разгуливающим навеселе со своими пьющими приятелями, чем изучающим физику, — Стивен получил диагноз «боковой амиотрофический склероза, или болезнь Лу Герига. Заболевание быстро прогрессировало, и ко времени нашего ужина Хокинг был уже почти полностью парализован. Но, хотя он не мог писать уравнения и был едва способен общаться, он боролся со своим медицинским роком, одновременно блистая фейерверком замечательных идей. Прогноз был печальным. Болезнь Лу Герига — это брутальный убийца, и, по всем расчетам, Стивен уже пару лет как должен был быть мертв. Между тем он вовсю отрывался, радостно (выражение Скиамы) революционизируя физику. Тогда рассказ Денниса о том, как Стивен смело противостоит невзгодам, казался преувеличением. Но, зная Стивена почти двадцать пять лет, я бы сказал, что это очень точное описание.

Стивен и Скиама, они оба были для меня неизвестными величинами, и я понятия не имел, является ли испарение черных дыр небылицей, дикой спекуляцией или гениальной идеей. Вполне могло быть, что я пропустил какую-то важную часть доказательства, пока просвещался по части еврейских законов о туалетной бумаге. Более вероятно, что Деннис просто сообщил вывод Стивена, не поддерживая его техническими обоснованиями. В конце концов, Скиама не был экспертом в передовых методах квантовой теории поля, использованных Хокингом. Как я уже говорил, он не злоупотреблял уравнениями.

Оглядываясь назад, я нахожу странным, что не связал лекцию Скиамы с коротким разговором, который двумя годами ранее состоялся у меня с Ричардом Фейнманом в кафе «Уэст Энд». Мы с Фейнманом тоже рассуждали о том, как черные дыры могут в конце концов распадаться. Но прошло много месяцев, прежде чем я все это соотнес.

Доказательство Стивена

Стивен, по его собственным словам, сначала не поверил странному выводу, сделанному Якобом Бекенштейном, в то время никому не известным принстонским студентом. Каким образом черные дыры могут обладать энтропией? Энтропия связана с незнанием — незнанием скрытой микроскопической струкутуры, подобно нашему незнанию точного положения молекул в ванне с теплой водой. Эйнштейновская теория гравитации и решение Шварцшильда для черной дыры ничего не говорят о микроскопических сущностях. Более того, похоже, что в черной дыре просто нет ничего, что можно было бы не знать. Шварцшильдовское решение уравнений Эйнштейна было единственным и точным. Для каждого значения массы и углового момента было одно, и только одно решение, описывающее черную дыру. Именно это имел в виду Джон Уилер, говоря, что «черные дыры не имеют волос». Согласно обычной логике, уникальная конфигурация (вспомните идеальный BMW из главы 7) не должна обладать энтропией. Бекенштейновская энтропия не имела смысла для Хокинга, пока он не изобрел свой собственный способ думать о ней.

Ключом для Хокинга стала температура, а не энтропия. Само по себе существование энтропии не подразумевает, что у системы есть температура[78]. Третья величина, энергия, также входила в уравнения. Связь между энергией, энтропией и температурой отсылает нас кзарождению термодинамики[79] в начале девятнадцатого века. В моде тогда были паровые двигатели, а француза Николя Леонара Сади Карно можно было назвать паровым инженером. Он интересовался очень практичным вопросом: как самым эффективным способом использовать тепло, содержащееся в данном количестве пара, для выполнения полезной работы — как получить максимальный навар с бакса. В данном случае под полезной работой подразумевалось ускорение локомотива, для чего требовалось преобразовывать тепловую энергию в кинетическую энергию большой массы железа.

Тепло — это неорганизованная хаотическая энергия случайного движения молекул. Напротив, кинетическая энергия локомотива организована в форме одновременного синхронизированного движения огромного числа совместно движущихся молекул. Так что задача состояла в том, чтобы превратить определенное количество неорганизованной энергии в организованную. Проблема состояла в том, что никто на самом деле не понимал, что в точности означает «организованная» и «неорганизованная» энергия. Карно первым определил энтропию как меру неорганизованности.

Сам я впервые познакомился с понятием энтропии, будучи студентом-механиком. Ни я сам, ни мои сокурсники не знали ничего о молекулярной теории теплоты, и я готов поспорить, что наш профессор — тоже. Курс «Машиностроение 101: термодинамика для механиков» был настолько путаным, что я, будучи определенно лучшим студентом в группе, ничего не мог понять. Хуже всего дело было с концепцией энтропии. Нам говорилось, что если мы что-нибудь немного нагреем, то изменение тепловой энергии, деленное на температуру, даст измерение энтропии. Все это записали, но никто не понял смысла. Для меня это было совершенно невразумительно: «Изменение числа сосисок, деленное на коэффициент кислых щей, называется белорояльностью»[80].

Частью этой проблемы было мое полное непонимание температуры. Согласно моему профессору, температура — это то, что измеряется термометром. «Да, — мог бы спросить я, — но что это такое?» Я совершено уверен, что ответом было бы: «Я уже сказал вам; это то, что измеряется термометром».

Определять энтропию через температуру — это запрягать телегу впереди лошади. Хотя мы и правда обладаем врожденным чувством температуры, более абстрактные концепции энергии и энтропии гораздо фундаментальнее. Профессор должен был сначала объяснить, что энтропия — это мера скрытой информации и выражается в битах. А затем он мог переходить к утверждению (корректному):

Температура — это прирост энергии системы при добавлении одного бита энтропии[81].

Изменение энергии при добавлении одного бита? Это же в точности то, что вычислил для черной дыры Бекенштейн. Похоже, он, сам того не осознавая, подсчитал температуру черной дыры.

Хокинг немедленно заметил упущение Бекенштейна, но мысль о том, что черная дыра имеет температуру, показалась Стивену столь абсурдной, что его первой реакцией было отбросить как недоразумение энтропию вместе с температурой. Возможно, отчасти причиной этого отторжения было то, что смехотворной идеей казалось испарение черной дыры. Я точно не знаю, что заставило Стивена передумать, но он это сделал. Используя сложнейшую математику квантовой теории поля, он нашел собственный способ доказать, что черные дыры излучают энергию.

Термин «квантовая теория поля» отражает замешательство, возникшее при открытии Эйнштейном фотонов. С одной стороны, Максвелл убедительно доказал, что свет — это волнообразное возмущение электромагнитного поля. Он и другие рассматривали пространство как нечто, способное колебаться, почти как студень в миске. Гипотетический студень называли светоносным эфиром, и, как по студню, под действием вибрации (например, от дрожащей вилки) по нему распространялись возмущения. Максвелл представлял себе колеблющиеся электрические заряды, распределенные по эфиру и излучающие световые волны. Эйнштейновские фотоны запутали все более чем на двадцать лет, пока Поль Дирак не применил наконец мощный математический аппарат квантовой механики к волнообразным колебаниям электромагнитного поля.

Для Хокинга самым важным следствием квантовой теории поля была идея о том, что электромагнитное поле подвержено «квантовой дрожи» (см. главу 4) даже в отсутствие возмущающих его зарядов. В пустом пространстве электромагнитное поле мерцает и колеблется за счет вакуумных флуктуаций. Почему мы не чувствуем этих вибраций в пустом пространстве? Вовсе не потому, что они очень слабые. На самом деле колебания электромагнитного поля в небольшой области пространства чрезвычайно сильны. Но поскольку пустое пространство обладает меньшей энергией, чем что-либо иное, энергия квантовых флуктуаций никаким способом не может передаться нашим телам.

В природе существует и другой тип дрожания, который очень заметен, — это тепловая дрожь. В чем разница между котлом холодной воды и котлом горячей воды? В температуре, скажете вы. Но это просто способ сказать, что горячая вода ощущается как горячая, а холодная — как холодная. В действительности различие состоит в том, что горячая вода обладает большей энергией и энтропией — котел заполнен хаотически, беспорядочно движущимися молекулами, за которыми очень трудно уследить. Это движение не имеет никакого отношения к квантовой механике и вовсе не является малозаметным. Суньте палец в котел, и вы без проблем заметите тепловые флуктуации.

Беспорядочное тепловое движение отдельных молекул нельзя увидеть, поскольку молекулы воды слишком малы, но прямые следствия теплового дрожания нетрудно заметить. Как я уже упоминал, частицы пыльцы, находящиеся в стакане теплой воды, будут беспорядочно дергаться, совершая броуновское движение, которое никак не связано с квантовой механикой. Эта теплота, содержащаяся в воде, заставляет ее молекулы беспорядочно бомбардировать частицы пыльцы. Если опустить палец в стакан, та же беспорядочная бомбардировка вашей кожи возбудит нервные окончания и вызовет ощущение теплой воды. Кожа и нервы при этом поглощают немного энергии из окружающей среды.

Даже в отсутствие воды, воздуха и любого другого вещества чувствительные к теплу нервы могут возбуждаться тепловыми вибрациями излучения черного тела. В этом случае нервы получают тепло из окружающей среды, поглощая фотоны. Но это возможно, только если температура выше абсолютного нуля. При абсолютном нуле квантовая дрожь электрического и магнитного полей куда более трудноуловима и не имеет столь очевидных проявлений.



Поделиться:


Последнее изменение этой страницы: 2017-01-26; просмотров: 454; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.228.88 (0.047 с.)