ТОП 10:

Замечание о больших и малых числах



В этой книге вы встретите множество очень больших и очень малых чисел. Человеческий мозг не приспособлен визуализировать числа много больше 100 и много меньше 1/100, хотя свои способности в этом деле можно развить. Например, я, постоянно имея дело с числами, могу более или менее наглядно представить себе миллион, однако разница между триллионом и квадриллионом выходит за пределы моих способностей к визуализации. Многие числа в этой книге намного больше триллионов и квадриллионов. Как с ними обращаться? Ответ основан на одной из важнейших перепрошивок всех времен — изобретении экспоненциальной, или научной, нотации для записи чисел.

Начнем с очень большого числа. Население Земли составляет около 6 миллиардов человек[9]. Миллиард — это 10, умноженное само на себя девять раз. Его можно представить, приписав к единице девять нулей:

Один миллиард = 10х10х10х10х10х10х10х10х10 = 1000 000 000.

В сокращенной форме 10, помноженное на себя девять раз, записывается как 109, или десять в девятой степени. Таким образом, население Земли — это примерно:

6 миллиардов = 6 X 109.

В данном случае 9 является показателем или порядком величины.

А вот другое, куда большее число — общее количество протонов и нейтронов в составе Земли:

число протонов и нейтронов в Земле (примерно) = 5 X 1051.

Очевидно, что их значительно больше, чем людей. Но насколько больше? Десять в пятьдесят первой степени — это результат перемножения пятидесяти одной десятки, а миллиард — только девяти. Так что у 1051 на 42 таких сомножителя больше, чем у 109. Это значит, что ядерных частиц на Земле примерно в 1042 раз больше, чем людей. (Заметьте, что я проигнорировал множители 5 и 6 в приведенных формулах. Они не слишком отличаются друг от друга, так что, если нам достаточно «оценки по порядку величины», ими можно просто пренебречь.)

Возьмем два действительно больших числа. Общее число электронов в той области Вселенной, которую можно наблюдать с помощью самых мощных телескопов, составляет около 1080. Общее число фотонов[10] — около 1090. Может показаться, что 1090 не намного больше, чем 1080, но это обманчивое впечатление: 1090 в 1010 раз больше, чем 1080, а 10 000 000 000 — это очень большое число. Внешне кажется, что 1080 и 1081 — это почти одно и то же, между тем второе число в десять раз больше первого. Так что даже небольшое изменение порядка величины может означать огромное изменение записанного числа.

Теперь рассмотрим очень маленькие числа. Размер атома, например, составляет примерно десятимиллиардную долю метра. В десятичной записи: размер атома = 0,0000000001 м.

Обратите внимание, что единица стоит на десятой позиции после запятой. В научной нотации для одной десятимиллиардной используется отрицательный показатель степени, а именно -10: 0,0000000001 = 1010.

Числа с отрицательным порядком величины малы, а с положительным — велики.

Обратимся к другому числу, еще меньшей величины. По сравнению с обычными объектами элементарные частицы, подобные электрону, — очень легкие. Килограмм — это масса литра воды. Масса электрона многократно меньше. В действительности один электрон весит примерно 9 х 10-31 килограмма.

В научной нотации очень упрощается умножение и деление чисел. Все, что для этого нужно, — это складывать и вычитать показатели. Вот несколько примеров:

1051 = 1042 х 109

1081/1080=10

10-31 х 109= 10-22.

Показатели степени — не единственное сокращение, которое люди используют для описания очень больших чисел. Некоторые такие числа носят собственные имена. Например, гугол — это 10100 (единица, за которой следует 100 нулей), а гуголплекс — это 1гугол (1, за которой идет гугол нулей) — это ужасно большое число.

Познакомившись с этими основами, давайте вернемся в не столь абстрактный мир, скажем, в Сан-Франциско, в третий год первого президентского срока Рональда Рейгана, — холодная война в самом разгаре, а новая война еще только начинается.

Часть 1
Надвигающаяся буря

История будет благосклонна ко мне, ибо я намерен сам ее написать.

— Уинстон Черчилль[11]

Заглавия первой и четвертой частей этой книги взяты из первого и пятого томов истории Второй мировой войны У Черчилля.

1
Первый гром

Сан-Франциско, 1983.

К тому дню, когда в мансарде особняка Джека Розенберга произошла первая стычка, грозные тучи войны собирались уже более 80 лет. Джек, известный также как Вернер Эрхард, был гуру, ловким торгашом и немного мошенником. До начала 1970-х он был просто Джеком Розенбергом, продавцом энциклопедий. Но однажды, когда он ехал по мосту Золотые Ворота, на него снизошло откровение. Он спасет мир и благодаря этому колоссально разбогатеет. Все, что нужно, — это классное имя и новый подход к делу. Имя должно быть Вернер (в честь Вернера Гейзенберга) Эрхард (в честь немецкого политика Людвига Эрхарда), а новым подходом станут Эрхардовские семинары-тренинги, ЭСТ. И он преуспел, если не в спасении мира, то по крайней мере в том, чтобы разбогатеть. Тысячи стеснительных, неуверенных в себе людей платили сотни долларов за изматывающие разглагольствования на шестнадцатичасовых мотивационных семинарах самого Вернера или одного из его многочисленных учеников, в течение которых (по слухам) запрещалось даже выходить в туалет. Это было куда дешевле и быстрее психотерапии и каким-то образом работало. Люди приходили стеснительными и неуверенными, а после семинаров они выглядели сильными, уверенными в себе и дружелюбными — совсем как Вернер: И неважно, что иногда они казались роботами-маньяками с трясущимися руками. Они ведь чувствовали себя лучше. «Тренинги» даже стали темой очень смешного фильма «Крутой наполовину» (Semi-Tough) Берта Рейнолдса.

Вернера постоянно окружали иступленные фанатки ЭСТ. «Рабыни» — это, пожалуй, слишком сильное слово, назовем их волонтерками. ЭСТ-тренированные повара готовили ему еду, шоферы возили его по городу, его особняк был наполнен разнообразными слугами. Но, по иронии судьбы, сам Вернер тоже был иступленным фанатом — фанатом физики.

Мне нравился Вернер. Он был умным, интересным и забавным. И он был без ума от физики. Ему хотелось быть ее частью, и он тратил массу денег, собирая в своем особняке группы лучших физиков-теоретиков. А иногда всего несколько особенно близких друзей-физиков: Сидни Соулман, Дэвид Финкелыптейн, Дик Фейнмания[12] — встречались в его доме на замечательных ужинах, сервированных выдающимися поварами. А еще Вернер любил проводить маленькие элитные конференции. Благодаря великолепно оборудованной семинарской аудитории в мансарде, волонтерам, исполняющим любое ваше желание, и месту встречи в Сан-Франциско эти мини-конференции доставляли массу удовольствия. Некоторые физики с подозрением относились к Вернеру, вдруг он хитроумно использует связи в физическом сообществе для продвижения своей деятельности? Но он никогда так не поступал. Насколько я могу судить, ему просто нравилось узнавать о новейших идеях от людей, которые их выдвигают.

Думаю, в целом состоялось три или четыре ЭСТ-конференции, но лишь одна из них оказала влияние на меня и мои физические исследования. Шел 1983 год. Среди других знаменитостей присутствовали Мюррей Гелл-Манн, Шелдон Глэшоу, Фрэнк Уилчек, Савас Димопоулос и Дэйв Финкельштейн. Но для нашей истории самым важным участником были трое главных участников Битвы при черной дыре: Герард 'т Хоофт, Стивен Хокинг и я.

Хотя до 1983 года я всего несколько раз встречался с Герардом, он произвел на меня глубокое впечатление. Все знали, что он блестящий ученый, но я чувствовал нечто гораздо большее. У него словно был стальной сердечник, дающий интеллектуальную мощь, с которой не мог сравниться никто из известных мне людей, быть может, за исключением Дика Фейнмана Оба они были шоуменами. Дик был американским шоуменом — грубоватым мачо, стремящимся оставить других в дураках. Однажды он рассказывал группе молодых физиков из Калтеха о розыгрыше, который устроили ему студенты. В Пасадене есть забегаловка, где продают сэндвичи-«знаменитости». Можно, например, заказать «Хамфри Богарта», «Мэрилин Монро» и т. п. Студенты позвали его туда на ланч — как я понимаю, в день его рождения — и стали один за другим заказывать «Фейнмана». Они заранее сговорились об этом с менеджером, так что парень за кассой даже глазом не моргнул.

Когда рассказ окончился, я сказал:

— Вот интересно, Дик, чем бы различались сэндвич «Фейнман» и сэндвич «Сасскинд»?

— Да все они одинаковы, — ответил он, — разве что в «Сасскинде» побольше ветчины.

— Да, — отозвался я, — зато там нет вареной колбасы[13].

Пожалуй, это был единственный случай, когда я обошел его в этой игре.

Герард — датчанин. Датчане — самые высокие люди в Европе, но Герард невысок и в меру упитан, с усами и взглядом типичного бюргера. У'т Хоофта, как и у Фейнмана, сильная соревновательная жилка, но его мне определенно никогда не удавалось обставить. В отличие от Фейнмана, он продукт старой Европы — последний великий европейский физик, наследовавший мантии Эйнштейна и Бора. Хотя он на шесть лет моложе меня, в 1983 году я трепетал перед ним и, надо сказать, не зря. В 1999 году ему присудили Нобелевскую премию за работу, приведшую к созданию Стандартной модели элементарных частиц.

И все же не Герард особо врезался мне в память после той встречи в вернеровской мансарде, а Стивен Хокинг, которого я видел тогда впервые. И именно тогда Стивен бросил бомбу, которая начала Битву при черной дыре.

Стивен — тоже шоумен. Физически он совсем крошечный человечек — я не уверен, потянет ли он на 40 килограммов, — но его тело служит носителем небывалого интеллекта и столь же раздутого эго. Стивен тогда пользовался более или менее обычным моторизованным инвалидным креслом и говорил собственным голосом, и все же его было очень трудно понять, если только не проводить с ним массу времени. Он путешествовал в сопровождении медсестры и молодого коллеги, который очень внимательно его слушал, а затем повторял сказанное.

В 1983 году переводчиком был Мартин Розек, ныне известный физик, один из пионеров важного направления, известного как супергравитация. Во время ЭСТ-конференции Мартин был еще совсем молод и не столь известен. Тем не менее по предыдущим встречам я знал его как очень способного физика-теоретика. В определенный момент беседы Стивен (через Мартина) сказал нечто, что я посчитал ошибочным. Я повернулся к Мартину и попросил прояснить физику вопроса. Он взглянул на меня как олень, пойманный светом фар. Позднее он объяснил мне, что случилось. Похоже, что перевод слов Стивена требовал столь высокой концентрации, что он обычно не мог следить за дискуссией. Вряд ли он понимал, о чем мы говорили.

Стивен выглядит довольно необычно. Я не о его кресле или очевидных телесных ограничениях. Несмотря на неподвижность мускулов на лице, его слабая улыбка уникальна: она одновременно ангельская и дьявольская, отражающая чувство затаенного удовольствия. В ходе ЭСТ-конференции я убедился, что общаться со Стивеном очень трудно. Ему требуется много времени на ответ, который обычно бывает очень лаконичным. Эти краткие, порой однословные ответы, его улыбка и его почти бесплотный интеллект напрягали. Это было как общение с дельфийским оракулом. Когда кто-то обращался к Стивену с вопросом, первоначальной реакцией была полная тишина, а затем ответ, который часто оказывался совершенно непонятным. Но всезнающая улыбка говорила: «Вы можете не понимать то, что я говорю, но я-то понимаю, и я прав».

Мир воспринимает тщедушного Стивена как могучего героя, человека необычайной смелости и силы духа. Те же, кто его знает, видят другие стороны: Стивена Играющего и Стивена Самоуверенного. Однажды вечером, во время ЭСТ-конференции, несколько участников отправились прогуляться по знаменитым сжигающим тормоза холмам Сан-Франциско. Стивен был с нами на своем моторизованном кресле. Когда мы добрались до самого крутого участка, он включил свою дьявольскую улыбку. Ни секунды не колеблясь, он рванулся вниз на предельной скорости, перепугав всех остальных. Мы бросились за ним, опасаясь самого худшего. В самом низу мы обнаружили его сидящим и улыбающимся. Он поинтересовался, нет ли здесь холма покруче. Стивен Хокинг: Ивел Книвел[14] от физики.

Хокинг и в самом деле настоящий физик-трюкач. Но, пожалуй, самым смелым его ходом была бомба, которую он бросил в мансарде Вернера.

Я не припомню, как была организована его лекция на ЭСТ. Сегодня на своих физических семинарах Стивен молча сидит в кресле, пока бестелесный компьютерный голос воспроизводит заранее сделанную запись. Этот компьютерный голос стал фирменным знаком Стивена; при всей своей монотонности он индивидуален и полон юмора. Но тогда, он, возможно, говорил сам, а Мартин переводил. Как бы то ни было, бомба всей своей мощью обрушилась на нас с Герардом.

Стивен заявил, что «информация теряется при испарении черной дыры», и, хуже того, он, похоже, это доказал. Если это правда, поняли мы с Герардом, то разрушены самые основания нашей научной области. Как восприняли эту новость остальные в вернеровской мансарде? Как Койот из мультфильма про Дорожного Бегуна[15], проскочивший с разбегу край утеса: земля под ногами уже исчезла, но они этого еще не поняли.

О космологах поговаривают, что они часто ошибаются, но никогда не сомневаются. Если так, то Стивен лишь наполовину космолог: он никогда не сомневается, однако практически никогда не ошибается. И все же в данном случае он ошибся. Но его «ошибка» оказалась одной из самых продуктивных в истории физики и могла бы привести к коренной смене парадигмы в представлениях о природе пространства, времени и материи.

Лекция Стивена была в тот день последней. Еще около часа после нее Герард стоял, озабоченно разглядывая диаграмму на вернеровской доске. Все остальные разошлись. Я продолжал наблюдать за мрачным выражением на лице Герарда и довольной улыбкой Стивена. Почти ничего не было сказано. Это был момент высочайшего напряжения.

На доске была диаграмма Пенроуза, представляющая черную дыру. Горизонт — граница черной дыры — был изображен пунктирной линией, а сингулярность в ее центре — грозной зазубренной. Линии, ведущие внутрь сквозь горизонт, представляли биты информации, падающие под горизонт в сингулярность. Линий, ведущих назад, не было. Согласно Стивену, эти биты были необратимо потеряны. И что еще хуже, Стивен доказал, что черные дыры в конце концов испаряются и исчезают, не оставляя никаких следов того, что в них упало.

Теория Стивена шла еще дальше. Он утверждал, что вакуум — пустое пространство — заполняют бесчисленные «виртуальные» черные дыры, которые возникают и прекращают существование столь быстро, что мы этого не замечаем. Под влиянием этих виртуальных черных дыр, утверждал он, информация стирается, даже если в окрестностях нет ни одной «реальной» черной дыры.

В главе 7 вы узнаете, что в точности означает понятие «информация» и что означает ее потерять. А пока просто поверьте мне: это была полная катастрофа. Мы с 'т Хоофтом это знали, но все остальные, кто услышал об этом в тот день, реагировали вяло: «Ну да, в черных дырах пропадает информация». Сам Стивен был воодушевлен. Для меня самым трудным при работе со Стивеном было постоянное раздражение, которое я чувствовал из-за его самодовольства. Потеря информации — это нечто такое, что просто не могло быть правдой, но Стивен отказывался это видеть.

Конференция завершилась, и мы отправились по домам. Стивену и Герарду предстояла дорога в Кембриджский и Утрихтский университеты соответственно; а мне — лишь 40-минутная поездка на юг по 101-му шоссе до Пало-Альто и Стэнфордского университета. Мне было трудно сконцентрироваться на дороге. В этот холодный январский день каждый раз, останавливаясь или тормозя, я начинал рисовать диаграмму с вернеровской доски на заиндевевшем лобовом стекле.

Вернувшись в Стэнфорд, я рассказал об утверждении Стивена своему другу Тому Бэнксу. И мы с ним тщательно все обдумали. Чтобы получше во всем разобраться, я даже пригласил одного бывшего ученика Стивена приехать в Южную Калифорнию. Мы с большим недоверием относились к утверждению Стивена, но какое-то время сами не могли понять почему. Что такого плохого в потере какого-то количества информации внутри черной дыры? Потом до нас дошло. Потеря информации — это то же самое, что порождение энтропии. А порождение энтропии означает генерацию тепла. Виртуальные черные дыры, существование которых столь вольно допустил Стивен, вели бы к выработке тепла в пустом пространстве. Совместно с еще одним коллегой, Майклом Пескином, мы сделали оценку, основанную на теории Стивена. Оказалось, что если он прав, то пустое пространство за малую долю секунды должно разогреться до тысячи миллиардов миллиардов миллиардов градусов. Хотя я знал, что Стивен ошибается, я не мог обнаружить брешь в его рассуждениях. Возможно, именно это и раздражало меня больше всего.

Последовавшая затем Битва при черной дыре являла собой нечто большее, нежели полемика между физиками. Это была также битва идей или, возможно, битва между фундаментальными принципами. Принципы квантовой механики и общей теории относительности всегда были на ножах друг с другом, и никто не знал, способны ли они сосуществовать. Хокинг — релятивист, верящий прежде всего в эйнштейновский принцип эквивалентности. Мы с ’т Хоофтом — квантовые физики, уверенные, что законы квантовой механики не могут нарушаться без подрыва самих основ физики. В следующих трех главах я опишу диспозицию сторон перед Битвой при черной дыре, изложив основы физики черных дыр, общей теории относительности и квантовой механики.

2
Темная звезда

Горацио, — на небе и земле

Есть многое, что и не снилось даже Науке.

— Уильям Шекспир, Гамлет[16]

Первый намек на что-то подобное черной дыре появился в конце XVIII века, когда великий французский физик Пьер-Симон де Лаплас и английский клирик Джон Митчел высказали одну и ту же замечательную мысль. Все физики тех дней серьезно интересовались астрономией. Все, что было известно о небесных телах, выяснялось благодаря свету, который они испускали или, как в случае с Луной и планетами, отражали. Хотя ко времени Митчела и Лапласа со смерти Исаака Ньютона прошло уже полвека, он все равно оставался самой влиятельной фигурой в физике. Ньютон считал, что свет состоит из крошечных частиц — корпускул, как он их называл, — а раз так, то почему бы свету не испытывать действие гравитации? Лаплас и Митчел задумались, может ли существовать звезда, столь массивная и плотная, что свет не сможет преодолеть ее гравитационное притяжение. Должны ли такие звезды, если они существуют, быть абсолютно темными и потому невидимыми?

Может ли снаряд[17] — камень, пуля или хотя бы элементарная частица — вырваться из гравитационного притяжения Земли? С одной стороны — да, с другой — нет. Гравитационное поле массы нигде не заканчивается; оно тянется бесконечно, становясь все слабее и слабее по мере увеличения расстояния. Так что брошенный вверх снаряд никогда полностью не избавится от земного притяжения. Но если снаряд брошен вверх с достаточно большой скоростью, он будет удаляться вечно, поскольку убывающая гравитация слишком слаба, чтобы развернуть его и притянуть назад к поверхности. В этом смысле снаряд может вырваться из земного тяготения.

Даже самый сильный человек не имеет шансов выбросить камень в открытый космос. Высота броска профессионального бейсбольного питчера может достигать 70 метров, это около четверти высоты Эмпайр-стейт-билдинг. Вели пренебречь сопротивлением воздуха, пуля, выпущенная из пистолета, могла бы достичь высоты 5 километров. Но существует особая скорость — называемая скоростью убегания[18], — которой едва хватает, чтобы вывести объект на вечно удаляющуюся траекторию. Начав движение с любой меньшей скоростью, снаряд упадет обратно на Землю. Стартовав с большей скоростью, он уйдет на бесконечность. Скорость убегания для поверхности Земли составляет 40 000 км/ч (11,2 км/с)[19].

Давайте временно станем называть звездой любое массивное небесное тело, будь то планета, астероид или настоящая звезда. Земля — это просто маленькая звезда, Луна — еще меньшая звезда и т. д.

По ньютоновскому закону тяготения, гравитационное воздействие звезды пропорционально ее массе, так что совершенно естественно, что и скорость убегания тоже зависит от массы звезды. Но масса — это только полдела. Другая половина — это радиус звезды. Представьте себе, что вы стоите на земной поверхности и в это время некая сила начинает сжимать Землю, уменьшая ее размеры, но без потери массы. Если вы остаетесь на поверхности, то сжатие будет приближать вас ко всем без исключения атомам Земли. При сближении с массой воздействие ее гравитации усиливается. Ваш вес — функция гравитации — будет возрастать, и, как нетрудно догадаться, преодолевать земное тяготение будет все трущее. Этот пример иллюстрирует фундаментальную физическую закономерность: сжатие звезды (без потери массы) увеличивает скорость убегания.

Теперь представьте себе прямо противоположную ситуацию. По каким-то причинам Земля расширяется, так что вы удаляетесь от массы. Тяготение на поверхности будет становиться слабее, а значит, из него легче вырваться. Вопрос, поставленный Митчелом и Лапласом, состоял в том, может ли звезда иметь такую большую массу и столь малый размер, чтобы скорость убегания превзошла скорость света.

Когда Митчел и Лаплас впервые высказали эти пророческие мысли, скорость света (обозначаемая буквой с) была известна уже более ста лет. Датский астроном Оле Рёмер в 1676 году определил, что она составляет колоссальную величину — 300 000 км (это примерно семь оборотов вокруг Земли) за одну секунду:

с = 300 000 км/с

При такой колоссальной скорости, чтобы удержать свет, требуется чрезвычайно большая или чрезвычайно сконцентрированная масса, однако нет видимых причин, по которым такой не могло бы существовать. В докладе Митчела Королевскому обществу впервые упоминаются объекты, которые Джон Уилер впоследствии назовет черными дырами.

Вас может удивить, что среди всех сил гравитация считается чрезвычайно слабой. Хотя тучный лифтер и прыгун в высоту могут чувствовать себя по-разному, есть простой эксперимент, демонстрирующий, как слаба в действительности гравитация. Начнем с небольшого веса: пусть это будет маленький шарик пенопласта. Тем или иным способом придадим ему статический электрический заряд. (Можно просто потереть его о свитер.) Теперь подвесим его к потолку на нитке. Когда он перестанет крутиться, нить будет висеть вертикально. Теперь поднесите к висящему шарику другой подобный заряженный предмет. Электростатическая сила будет отталкивать подвешенный груз, заставляя нить наклоняться.

 

 

Того же эффекта можно добиться с помощью магнита, если висящий груз сделан из железа.

 

 

Теперь уберите электрический заряд или магнит и попытайтесь отклонить подвешенный груз, поднося к нему очень тяжелые предметы. Их гравитация будет притягивать груз, но воздействие окажется столь слабым, что его невозможно заметить. Гравитация чрезвычайно слаба по сравнению с электрическими и магнитными силами.

 

 

Но если гравитация так слаба, почему нельзя допрыгнуть до Луны? Дело в том, что огромная масса Земли, 6x1024 кг, с легкостью компенсирует слабость гравитации. Но даже при такой массе скорость убегания с поверхности Земли составляет меньше одной десятитысячной от скорости света. Чтобы скорость убегания стала больше с, придуманная Митчелом и Лапласом темная звезда должна быть потрясающе массивной и потрясающе плотной.

Чтобы прочувствовать масштаб величин, давайте рассмотрим скорости убегания для разных небесных тел. Для покидания поверхности Земли нужна начальная скорость около 11 км/ с, что, как уже отмечалось, составляет примерно 40 000 км/ч. По земным меркам это очень быстро, но в сравнении со скоростью света подобно движению улитки.

На астероиде у вас было бы куда больше шансов покинуть поверхность, чем на Земле. У астероида радиусом 1,5 км скорость убегания составляет около 2 м/с: достаточно просто прыгнуть. С другой стороны, Солнце много больше Земли, как по размеру, так и по массе[20]. Эти два фактора действуют в противоположных направлениях. Большая масса затрудняет покидание поверхности Солнца, а большой радиус, наоборот, упрощает. Масса, однако, побеждает, и скорость убегания для солнечной поверхности примерно в пятьдесят раз больше, чем для земной. Но она все равно остается много ниже скорости света.

Но Солнце не будет вечно сохранять свой нынешний размер. В конце концов звезда исчерпает запасы топлива, и распирающее ее давление, поддерживаемое внутренним теплом, ослабнет. Подобно гигантским тискам, гравитация начнет сжимать звезду до малой доли ее первоначального размера. Где-то через пять миллиардов лет Солнце выгорит и сколлапсирует в так называемый белый карлик с радиусом примерно как у Земли. Чтобы покинуть его поверхность, потребуется скорость 6400 км/с — это очень много, но все равно лишь 2 % от скорости света.

Если бы Солнце было немного — раза в полтора — тяжелее, добавочная масса стиснула бы его сильнее, чем до состояния белого карлика. Электроны в звезде вдавились бы в протоны, образуя невероятно плотный шар из нейтронов. Нейтронная звезда столь плотна, что одна лишь чайная ложка ее вещества весит несколько миллиардов тонн. Но и нейтронная звезда еще не искомая темная; скорость убегания с ее поверхности уже близка к скорости света (около 80 % с), но все же не равна ей.

Если коллапсирующая звезда еще тяжелее, скажем, в пять раз массивнее Солнца, тогда даже плотный нейтронный шар не сможет противостоять сжимающему гравитационному притяжению. В результате финального направленного внутрь взрыва звезда сожмется в сингулярность — точку почти бесконечной плотности и разрушительной силы. Скорость убегания для этого крошечного ядра многократно превосходит скорость света. Так возникает темная звезда, или, как мы сегодня говорим, черная дыра.

Эйнштейну так не нравилось само представление о черных дырах, что он отрицал возможность их существования, утверждая, что они никогда не смогут образоваться. Но нравится это Эйнштейну или нет, черные дыры — это реальность. Сегодня астрономы запросто изучают их, причем не только одиночные сколлапсировавшие звезды, но и находящиеся в центрах галактик черные гиганты, образованные слиянием миллионов и даже миллиардов звезд.

 







Последнее изменение этой страницы: 2017-01-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.231.21.160 (0.017 с.)