ТОП 10:

Нулевые колебания и квантовая дрожь



Маленький сосуд, скажем сантиметрового размера, заполнили атомами — пусть это будут атомы гелия, они химически инертны, — а затем нагрели до высокой температуры. Благодаря нагреву частицы стали быстро двигаться, непрерывно сталкиваясь друг с другом и со стенками сосуда. Эта постоянная бомбардировка создает давление на стенки.

По обыденным меркам, атомы движутся очень быстро: их средняя скорость составляет около 1500 м/с. Теперь газ охлаждается. По мере отвода тепла энергия теряется и атомы замедляются. В конце концов, если продолжить отводить тепло, газ охладится до наинизшей возможной температуры — абсолютного нуля, или примерно минус 273,15 градуса по шкале Цельсия. Атомы, потеряв всю свою энергию, останавливаются, и давление на стенки сосуда исчезает.

По крайней мере, предполагается, что это должно произойти. Но в этом рассуждении забыли принять во внимание принцип неопределенности.

Подумайте: что в данном случае нам известно о положении любого атома? На самом деле очень много: атом заключен внутри сосуда, а сосуд имеет размер один сантиметр. Очевидно, что неопределенность его положения Δχ меньше сантиметра. Допустим на мгновение, что все атомы действительно пришли в состояние покоя, когда мы отвели все тепло. Каждый атом будет иметь нулевую скорость без неопределенности. Иначе говоря, Δν станет нулем. Но это невозможно. Будь это так, произведение mΔνΔχ тоже обратилось бы в нуль, а нуль определенно меньше постоянной Планка. Можно подойти к этому иначе: если бы скорость атома стала нулевой, его положение оказалось бы бесконечно неопределенным. Но это не так. Все атомы находятся в сосуде. Так что даже при абсолютном нуле атомы не могут полностью прекратить свое движение; они продолжают ударяться в стенки сосуда и оказывать на них давление. Это одна из неожиданных причуд квантовой механики.

Когда из системы откачано так много энергии (при температуре абсолютного нуля), физики говорят, что она находится в основном состоянии. Остаточные флуктуации в основном состоянии обычно называют нулевыми колебаниями, однако физик Брайан Грин предложил более яркое разговорное выражение — «квантовая дрожь».

Дрожи подвержены не только положения частиц. Согласно квантовой механике, все, что может дрожать, дрожит. Другой пример — электрическое и магнитное поля в пустом пространстве. Вибрации электрических и магнитных полей окружают нас со всех сторон, заполняя пространство в виде световых волн. Даже в темной комнате электромагнитные поля вибрируют в форме инфракрасных волн, микроволн и радиоволн. Но что, если затемнить комнату, применив все достижения науки и устранив все фотоны? Электрическое и магнитное поля продолжат свое квантовое дрожание. «Пустое» пространство — это бешено вибрирующая, осциллирующая, дрожащая среда, которая никогда не успокаивается.

Еще до появления квантовой механики было известно о «тепловой дрожи», которая все заставляет флуктуировать. Например, нагрев газа вызывает усиление случайных движений молекул. Когда же нагрето пустое пространство, оно заполнено дрожащими электрическими и магнитными полями. Это не имеет никакого отношения к квантовой механике и было известно еще в девятнадцатом веке.

Квантовая и тепловая дрожь кое в чем похожи друг на друга, но не во всем. Тепловая дрожь очень хорошо заметна. Дрожание молекул и электромагнитных полей раздражает ваши нервные окончания и позволяет чувствовать тепло. Оно может быть крайне разрушительным. Например, энергия тепловой дрожи электромагнитных полей может передаваться электронам в атомах. Если температура достаточно высока, электроны могут отрываться от атомов. Эта же энергия может вас сжечь или даже испарить. Напротив, квантовая дрожь, хотя и может быть невероятно энергичной, не способна причинить боль. Она не раздражает нервные окончания и не разрушает атомы. Почему? Она достигает энергии, необходимой для ионизации атома (выбивания из него электронов) или для срабатывания ваших нервных окончаний. Однако из основного состояния невозможно позаимствовать энергию. Квантовая дрожь — это то, что остается, когда система находится в состоянии абсолютного энергетического минимума. Так что невероятно сильные квантовые флуктуации не обладают деструктивным эффектом тепловых флуктуаций, поскольку их энергия «недоступна».

Черная магия

Для меня самое странное в квантовой механике — это интерференция. Вернемся к эксперименту с двумя щелями, который я описывал в начале этой главы. В нем три составляющих: источник света, плоский экран с двумя узкими щелями и люминесцентный экран, который вспыхивает, когда на него попадает свет.

Начнем экспериментировать, закрыв левую щель. Результатом будет округлая засветка на экране без всяких деталей. Если снизить яркость источника, то станет видно, что это свечение в действительности складывается из случайно расположенных вспышек, вызванных отдельными фотонами. Вспышки непредсказуемы, но их достаточно много, они складываются в округлое пятно.

Вели открыть левую щель и закрыть правую, рисунок на экране в целом практически не изменится, не считая небольшого сдвига влево.

Сюрприз ждет нас, когда будут открыты обе щели. Вместо простого наложения фотонов, прошедших через левую и правую щели, с получением более интенсивного округлого пятна без внутренних деталей результатом оказывается полосатый узор наподобие зебры.

Самая странная вещь в этом новом рисунке — наличие в нем темных полос, куда не попадают фотоны, несмотря на то что те же области заполнялись вспышками, когда открыта была только одна щель. Возьмем точку, помеченную буквой X на центральной темной полосе. Фотоны легко проходят через любую из щелей и попадают в точку X, когда в один момент открыта только одна из щелей. Может показаться, что при обеих открытых щелях число фотонов, попадающих в точку X, только возрастет. Но открытие двух щелей дает парадоксальный эффект: поток фотонов, приходящих в точку X, прекращается. Почему открытие обеих щелей делает менее вероятным для фотона попадание в точку X?

Представьте себе кучку пьяных заключенных, шатающихся по подземелью с двумя дверями, ведущими наружу. Тюремщик внимательно следит за тем, чтобы никогда не оставлять открытой одну дверь, поскольку некоторые узники столь пьяны, что могут случайно найти выход. Но у него нет сомнений относительно отпирания сразу двух дверей. Какая-то загадочная магия мешает пьяницам выйти наружу, когда открыты обе двери. Конечно, с настоящими заключенными такого не случается, но нечто в этом роде предсказывает иногда квантовая механика не только для фотонов, но и для всех частиц.

Этот эффект кажется странным, если считать, что свет состоит из частиц, но он совершенно естествен для волн. Две волны, расходящиеся из двух щелей, усиливают друг друга в одних точках и гасят — в других. В волновой теории света темные полосы возникают в результате взаимного гашения, которое также называют деструктивной интерференцией. Единственная проблема состоит в том, что на самом деле свет иногда ведет себя как частицы.

Квант в квантовой механике

Электромагнитная волна — это пример колебания. В каждой точке пространства электрическое и магнитное поля вибрируют с частотой, которая зависит от цвета излучения. В природе существует множество других колебаний. Вот некоторые широко известные примеры.

♦ Маятник часов. Маятник совершает полное колебание вперед и назад примерно за секунду. Частота такого маятника — один герц, или один цикл в секунду.

♦ Груз, подвешенный к потолку на пружине. Если пружина достаточно жесткая, частота колебаний составит несколько герц.

♦ Вибрация камертона или скрипичной струны. И то и другое может давать несколько сотен герц.

♦ Электрический ток в цепи. Он может осциллировать с гораздо большей частотой.

Системы, способные осциллировать, называются — что, в общем, неудивительно — осцилляторами. Все они обладают энергией, по крайней мере когда осциллируют, и в классической физике эта энергия может иметь любую величину. Я имею в виду, что осциллятор можно плавно накачивать энергией до любого желаемого значения. На графике показано, как растет энергия осциллятора по мере его накачки.

Но оказывается, что в квантовой механике энергия может поступать только маленькими неделимыми порциями. Если попытаться плавно увеличить энергию осциллятора, результатом будет лестница, а не гладкий пандус. Прибавление может осуществляться лишь порциями, кратными единице, называемой квантом энергии.

Какова величина квантовой единицы? Это зависит от частоты осциллятора. Правило здесь в точности то же самое, что было открыто Планком и Эйнштейном для световых квантов: квант энергии Е — это частота осциллятора f, помноженная на постоянную Планка h:

E = hf.

У обычных осцилляторов, таких как маятник, частота не очень велика и шаг по высоте (квант энергии) чрезвычайно мал. В этом случае ступенчатый график состоит из таких крошечных шагов, что выглядит как гладкий подъем. Именно поэтому мы не замечаем квантования энергии в повседневной жизни. Однако электромагнитные волны могут иметь достаточно высокие частоты, при которых ступеньки лестницы будут значительно выше. В действительности, как вы могли уже догадаться, увеличение энергии электромагнитной волны на одну ступень — это то же, что добавление одного фотона к пучку света.

Для классически настроенного мозга кажется нелогичным тот факт, что энергия может добавляться только неделимыми квантами, но именно это вытекает из квантовой механики.

Квантовая теория поля

Лапласовская картина мира восемнадцатого века была довольно унылой: частицы, ничего, кроме частиц, движущихся по орбитам, которые предопределены деспотичными уравнениями Ньютона. Я бы рад сообщить, что современная физика предлагает более теплую, размытую картину реальности, но боюсь, что это не так. Это по-прежнему частицы, только на современный манер. Железный закон детерминизма заменен более гибким законом квантовой случайности.

Новый математический аппарат, заменивший ньютоновские законы движения, называется квантовой теорией поля, и согласно его диктату, весь природный мир состоит из элементарных частиц, движущихся из одной точки в другую, сталкивающихся, распадающихся и вновь сливающихся. Это колоссальная сеть мировых линий, соединяющих события (точки пространства-времени). Математику этой гигантской паутины из линий и точек нелегко объяснить на обыденном языке, но главные моменты совершенно ясны.

В классической физике частицы движутся от одной точки пространства-времени к другой по строго определенным траекториям. Квантовая механика вносит в их движение неопределенность. Тем не менее мы можем считать, что они проходят между точками пространства-времени, хотя и по неопределенным траекториям. Эти расплывчатые траектории называются пропагаторами. Обычно пропагаторы изображаются линиями между двумя пространственно-временными событиями, но лишь потому, что не существует способа нарисовать неопределенное движение подлинных квантовых частиц.

 

 

Пропагатор

Далее следуют взаимодействия, которые говорят нам, как частицы ведут себя при встрече. Базовый процесс взаимодействия называется узлом. Узел подобен дорожной развилке. Частица движется по своей мировой линии, пока не оказывается на развилке. Но вместо того чтобы выбрать одну из двух дорог, частица разделяется на две — по одной для каждой дороги. Лучший известный пример узла — это испускание фотона заряженной частицей, или электроном. В этом случае одинокий электрон спонтанно разделяется на электрон и фотон[49]. (Мировые линии фотонов традиционно изображают либо волнистыми, либо пунктирными.)

Узел с испусканием фотона

Это базовый процесс испускания света: от дрожащих электронов отщепляются фотоны.

Существуют множество узлов другого типа, в которых задействуются другие частицы. В атомных ядрах, например, есть частицы, называемые глюонами. Глюон способен распадаться на два глюона.

Глюонныйузел

Любой процесс, способный протекать в прямом направлении, может также протекать и в обратном. Это означает, что частицы могут встречаться и сливаться. Например, два глюона могут встретиться и соединиться в один глюон.

Ричард Фейнман придумал, как объединять пропагаторы и узлы, формируя более сложные процессы. Например, существует фейнмановская диаграмма, изображающая фотон, перепрыгивающий с одного электрона на другой, которая описывает, как электроны сталкиваются и рассеиваются.

Другая диаграмма показывает, как глюоны образуют запутанное, липкое, тягучее вещество, которое удерживает вместе кварки в ядре.

Ньютоновская механика ищет ответы на древний вопрос о предсказании будущего по заданному начальному состоянию, включающему положения и скорости множества частиц. Квантовая Теория поля ставит вопрос иначе: дан начальный набор частиц, движущихся определенным образом, какова вероятность различных исходов?

В какой-то мере здесь используется наивная (и ошибочная) версия квантовой теории поля, которую легко бы понял Лаплас, хотя она бы могла ему не понравиться: поведение частицы не детерминировано; но существует положительная вероятность[50] для каждого маршрута, ведущего в прошлое (два электрона) и в будущее (два электрона и фотон). Отсюда может сложиться впечатление, что для нахождения полной вероятности надо просто сложить индивидуальные вероятности для всех возможных маршрутов. Такое заключение идеально соответствовало бы лапласовскому, классически настроенному мышлению, но на самом деле все устроено не так. Правильный рецепт выглядит странно — не пытайтесь грокнуть этот результат, просто примите его.

Верный рецепт является одним из следствий странной «квантовой логики», открытой великим английским физиком Полем Дираком сразу вслед за работами Гейзенберга и Шрёдингера. Фейнман следовал идеям Дирака, когда вводил математические правила вычисления амплитуды вероятности для каждой фейнмановской диаграммы. Более того, сложив амплитуды вероятности для всех диаграмм, вы не получите окончательную вероятность. В действительности амплитуды вероятности не обязаны быть положительными числами. Они могут быть положительными, отрицательными и даже комплексными.

Но амплитуда вероятности — это не вероятность. Чтобы найти полную вероятность того, что, скажем, два электрона превратятся в два электрона и фотон, надо прежде всего сложить амплитуды вероятностей для всех фейнмановских диаграмм. Затем, согласно дираковской абстрактной квантовой логике, надо взять полученную величину и возвести ее в квадрат! Этот результат всегда положителен, и он дает вероятность для конкретного исхода.

Это необычное правило лежит в самом основании квантовых странностей. Лапласу это показалось бы абсурдом, и даже Эйнштейн не находил в этом смысла. Но квантовая теория поля невероятно точно описывает все, что мы знаем об элементарных частицах, включая то, как они соединяются, формируя ядра, атомы и молекулы. Как я уже говорил во введении, квантовым физикам приходится перенастраиваться на новые правила логики[51].

Прежде чем завершить эту главу, я бы хотел вернуться к тому, что так глубоко беспокоило Эйнштейна. Я не знаю наверняка, но предполагаю, что это было связано с предельно бессмысленной природой вероятностных утверждений. Меня всегда озадачивало: что же они на самом деле говорят о нашем мире? Насколько я могу судить, они не означают ничего определенного. Чтобы проиллюстрировать эту мысль, я однажды написал приведенную ниже историю, включенную первоначально в книгу Джона Брокмана «Во что мы верим, но не можем доказать»[52]. История под названием «Беседа со студентом-тугодумом» описывает разговор между профессором физики и студентом, который никак не может уловить суть. Когда я писал эту историю, то отождествлял себя скорее со студентом, чем с профессором.

Студент: Здравствуйте, профессор. У меня проблема. Я решил провести небольшой вероятностный эксперимент — знаете, подбрасывание монетки — и проверить то, чему вы нас учили. Но у меня ничего не вышло.

Профессор: Что ж, я рад, что вы проявили интерес. Что же вы сделали?

Студент: Я подбросил монетку 1000 раз. Помните, вы говорили, что вероятность того, что выпадет «орел», — одна вторая? Я подсчитал, что если подбросить монетку 1000раз, то «орел» должен выпасть 500 раз. Но он выпал 513 раз. Почему?

Профессор: Вы забыли о допустимой погрешности. Если подбросить монетку какое-то число раз, допустимая погрешность будет равняться квадратному корню от количества бросков. Для 1000 бросков допустимая погрешность около 30. Так что вы получили совершенно предсказуемый результат.

Студент: О, теперь я понял! Каждый раз, когда я подброшу монетку 1000 раз, «орел» выпадет от 470 до 530 раз. Каждый раз! Здорово, теперь я уверен, что это факт!

Профессор: Нет-нет! Это значит, что «орел», вероятно, выпадет от 470 до 530 раз.

Студент: Вы хотите сказать, что «орел» может выпасть 200 раз? Или 850 раз? Или выпадать все время?

Профессор: Вероятно, нет.

Студент: Может быть, проблема в том, что я сделал недостаточно бросков? Может быть, мне нужно пойти домой и подбросить монетку миллион раз? Может быть, тогда результат будет лучше? Профессор: Вероятно, нет.

Студент: Профессор, пожалуйста, скажите мне что-нибудь, в чем я могу быть уверен. Но вы все время твердите свое «вероятно». Вы можете мне объяснить, что такое вероятность, но без слова «вероятно»?

Профессор: Гм-гм. Я попробую. Это значит, что я буду удивлен, если «орел» выпадет чаще, чем предполагает допустимая погрешность.

Студент: О господи! Вы хотите сказать, что все, что вы рассказывали нам о статистической механике, квантовой механике и математической вероятности, — все это значит лишь то, что вы будете удивлены, если оно не сработает?

Профессор: Э-э-э…

Если я подброшу монетку миллион раз, то, совершенно точно, «орел» миллион раз не выпадет. Я не азартен, но я настолько в этом уверен, что, не задумываясь, поставил бы на это свою жизнь или свою душу. Да что там душу, я поставил бы на это свою зарплату за целый год. Я абсолютно убежден, что законы больших чисел — то есть теория вероятности — сработают и не дадут меня в обиду. На них основана вся наука. Но я не могу этого доказать и на самом деле понятия не имею, почему они работают. Может быть, именно поэтому Эйнштейн говорил, что Бог не играет в кости. Вероятно, все-таки играет.

Время от времени мы слышим утверждения физиков о том, что Эйнштейн не понимал квантовую механику и потому тратил свое время на наивные классические теории. Я очень сильно сомневаюсь, что это правда. Его аргументы против квантовой механики чрезвычайно изящны, кульминации они достигли в одной из самых сложных и самой цитируемой во всей физической науке статье[53]. Я считаю, что Эйнштейн был обеспокоен теми же вещами, что и занудный студент-тугодум. Как может окончательная теория реальности касаться чего-то столь маловразумительного, как степень нашего удивления относительно исхода эксперимента?

Я продемонстрировал вам некоторые парадоксальные, почти алогичные вещи, которые квантовая механика вываливает на классически настроенный мозг. Но я предполагаю, что вы не вполне удовлетворены. На самом деле я на это надеюсь. Если вы запутались, так и должно быть. Единственное лекарство, которое от этого помогает, — это доза математического анализа и погружение на несколько месяцев в хороший учебник по квантовой механике. Только очень странный мутант или человек, рожденный в очень необычной семье, может быть естественным образом настроен на понимание квантовой механики. Помните, в итоге даже Эйнштейн не смог ее грокнуть.

5
Планк изобретает улучшенный эталонный масштаб

Однажды в стэнфордском кафетерии я заметил группу студентов с моего подготовительного курса физики, которые что-то изучали за столом. «Друзья, чем занимаетесь?» — спросил я. Ответ меня удивил. Они заучивали до последней цифры таблицу постоянных, приведенную на обложке учебника[54]. Таблица наряду с двумя десятками других включала следующие постоянные:

 

h (постоянная Планка) = 6,626068x10 34 м2кг/с

Число Авогадро = 6,0221415x1023

Заряд электрона = 1,60217646х10-19 кулона с (скорость света) = 299 792 458 м/с

Диаметр протона = 1,724х10-15 м

G (гравитационная постоянная) = 6,6742 х10-11 м3с-2кг-1

 

На других научных предметах абитурентов натаскивают запоминать огромное количество информации. Они хорошо усваивают физику, но часто пытаются учить ее тем же способом, которым учат психологию. Правда состоит в том, что физика весьма незначительно нагружает память. Я не уверен, что многие физики сумеют назвать большинство из этих постоянных даже по порядку величины.

Отсюда возникает интересный вопрос: почему численные значения этих постоянных столь неуклюжие? Почему бы им не быть простыми числами вроде 2, 5 или даже 1? Почему они все время оказываются то слишком маленькими (постоянная Планка, заряд электрона), то слишком большими (число Авогадро, скорость света)?

С физикой ответ связан слабо, гораздо больше — с биологией. Возьмем число Авогадро. Оно выражает число молекул, содержащихся в определенном количестве газа. Каком количестве? В таком, с которым было удобно работать химикам начала девятнадцатого века; иными словами, это количество, которое помещается в колбе или другом сосуде, более или менее сопоставимом с человеком по размерам. Фактическое значение числа Авогадро больше связано с числом молекул в теле человека, чем с глубокими физическими принципами[55].

Ещё один пример — диаметр протона. Почему он так мал? И вновь ключ к ответу в человеческой психологии. Численное значение в таблице выражено в метрах, но что такое метр? Это принятый в метрической системе единиц аналог английского ярда, который связан с расстоянием от носа до кончика пальца вытянутой руки. Очень вероятно, что это удобная единица для измерения ткани или веревки. Малость протона говорит лишь о том, что нужно очень много протонов, чтобы составить человеческую руку. С точки зрения фундаментальной физики в этом числе нет ничего особенного.

Так почему бы нам не изменить единицы, чтобы эти числа стало проще запоминать? На практике часто так и делается. Например, в астрономии, где для измерения длины используется световой год. (Ненавижу, когда световой год ошибочно используют в качестве единицы времени: «Эгей! Целый световой год прошел, как мы с тобой не виделись!») Скорость света не так велика, если выразить ее в световых годах в секунду. На самом деле она очень мала — всего около 3x10-8. Но что, если также заменить единицу времени и вместо секунды взять год? Поскольку свет тратит ровно один год на то, чтобы пройти один световой год, скорость света составит один световой год в год.

Скорость света — одна из фундаментальных величин в физике, так что есть смысл использовать такие единицы, в которых она равна единице. Но вот, скажем, радиус протона — вещь не особо фундаментальная. Протоны — сложные объекты, состоящие из кварков и других частиц, так зачем предоставлять им почетное первое место? Гораздо осмысленнее выбрать константы, которые управляют глубочайшими и самыми универсальными законами физики. Нет больших разногласий, какие именно это законы.

♦ Максимальная скорость любого объекта во Вселенной равна скорости света с. Этот предел скорости — закон не только для света, но для всего в природе.

Все объекты во Вселенной притягивают друг друга с силой, пропорциональной произведению их масс и гравитационной постоянной G. «Все объекты» означает все объекты без исключения.

♦ Для любого объекта во Вселенной произведение его массы на неопределенности положения и скорости никогда не бывает меньше постоянной Планка h.

Курсив здесь подчеркивает всеобщий характер данных законов. Они применимы ко всем объектам вместе и к каждому в отдельности — ко всему сущему. Эти три закона природы действительно заслуживают того, чтобы их называли универсальными, — в куда большей мере, чем законы ядерной физики или свойства конкретных частиц вроде протона. Это может казаться тривиальным, но одно из самых глубоких озарений относительно структуры физики снизошло на Макса Планка, когда в 1900 году он понял, что можно так выбрать единицы длины, массы и времени, что сделать все три фундаментальные постоянные — с, G к h — равными единице.

Фундаментальный масштаб — это планковская единица длины. Она намного меньше метра и даже диаметра протона. В действительности она примерно в сто миллиардов миллиардов раз меньше протона (в метрах это примерно 10-35). Даже если протон увеличить до размеров Солнечной системы, планковская длина будет не больше вируса. Нетленная заслуга Планка в том, что он догадался: этот невозможно крошечный размер должен играть фундаментальную роль в любой окончательной теории физического мира. Планк не знал, что это будет за роль, но он понял, что наименьшие строительные блоки материи будут «планковского размера».

Единица времени, которая потребовалась Планку, чтобы сделать с, G и h равными единице, тоже оказалась чрезвычайно малой, а именно 10-42 секунды, — время, которое требуется свету, чтобы пройти одну планковскую длину.

Наконец, существует планковская единица массы. Учитывая, что планковская длина и планковское время столь невероятно малы (в обыденных, биоориентированных единицах), было бы естественно ожидать, что планковская единица массы окажется много меньше массы любого обычного объекта. Но тут-то вы и ошибетесь. Оказывается, самая фундаментальная единица массы в физике не так уж страшно мала по биологическим меркам и составляет массу примерно десяти миллионов бактерий. Это примерно равно массе мельчайшего объекта, еще различимого невооруженным глазом, пылинки например.

Эти единицы — планковские длина, время и масса — имеют экстраординарное значение: это размер, время полураспада и масса самой маленькой возможной черной дыры. В следующих главах мы еще вернемся к этому вопросу.

Е = mc2

Возьмем сосуд, наполним его кубиками льда, крепко запечатаем и взвесим на кухонных весах. Теперь поставим его на горелку и расплавим лед, превратив его в горячую воду. Взвесим снова. Если вы сделаете это достаточно тщательно, добившись, чтобы в сосуд ничего не попадало извне и из него ничего не выходило наружу, то конечный вес окажется равным исходному, вплоть до очень высокой точности взвешивания. Но если бы вы могли измерять вес с погрешностью не больше одной триллионой, то заметили бы различие; горячая вода весила бы немного больше, чем лед. Иначе говоря, нагревание добавляет к весу несколько триллионных долей килограмма.

Что происходит? Ну, просто тепло — это энергия. Но согласно Эйнштейну, энергия — это масса, так что добавление тепла к содержимому сосуда увеличивает его массу. Знаменитое уравнение Эйнштейна Е = mc2 выражает тот факт, что масса и энергия — это одна и та же вещь, измеренная в разных единицах. В сущности, это подобно переводу миль в километры; расстояние в километрах — это расстояние в милях, помноженное на 1,61. В случае массы и энергии переводной коэффициент равен квадрату скорости света.

Стандартная физическая единица для энергии — джоуль. Сто джоулей — это энергия, требуемая для работы 100-ваттной лампочки в течение одной секунды. Один джоуль — это кинетическая энергия двухкилограммового груза, движущегося со скоростью один метр в секунду. Пища ежедневно дает вам около 10 миллионов джоулей энергии. В то же время стандартная международная единица массы — килограмм — равна массе литра воды.

Формула Е = mc2 говорит нам, что масса и энергия — это взаимозаменяемые понятия. Если удастся уничтожить немного массы, она превратится в энергию, часто в форме тепла, хотя и не обязательно. Представьте, что килограмм массы исчез и заменен теплом. Чтобы понять, сколько получится тепла, умножьте один килограмм на очень большое число c2. Результатом будет около 1017 джоулей. На таком запасе вы сможете прожить 30 миллионов лет или создать очень мощную ядерную боеголовку. К счастью, преобразовать массу в другие формы энергии очень трудно, но Манхэттенский проект[56] доказал, что это возможно.

Для физиков понятия массы и энергии стали настолько близкими, что мы редко вообще их различаем. Например, массу электрона часто выражают определенным числом электронвольт — единиц энергии, применяемых в атомной физике.

Выяснив это, вернемся к планковской массе — массе пылинки, — которую также можно назвать планковской энергией. Представим, что эта пылинка благодаря некоему открытию превратилась в тепловую энергию. По величине она была бы примерно равна полному баку бензина. Вы могли бы пересечь Соединенные Штаты, затратив десять планковских масс.

Невообразимая малость объектов планковского масштаба и невероятная сложность их непосредственного наблюдения служат источником глубокой печали для теорфизиков. Даже сам факт, что мы просто способны поставить эти вопросы, уже есть триумф человеческого воображения. Но именно в этом далеком мире нам следует искать ключ к парадоксам черных дыр: из-за планковского размера битов информации, которые плотными «обоями» покрывают горизонт черной дыры. В действительности горизонт имеет самую высокую плотность информации, которая только допускается законами природы. Далее мы разберемся, каков смысл термина «информация» и тесно связанной с ним концепции энтропии. И тогда мы будем готовы к тому, чтобы понять, за что велась Битва при черной дыре. Но сначала я хочу объяснить, почему квантовая механика подрывает один из самых надежных выводов общей теории относительности — вечное существование черных дыр.

6
В бродвейском баре

Самая первая моя беседа с Ричардом Фейнманом состоялась в кафе «Уэст Энд» на Бродвее в Верхнем Манхэттене. Шел 1972 год. Я был относительно малоизвестным тридцатидвухлетним физиком; Фейнману было пятьдесят три. Хотя стареющий лев уже перевалил через пик своей силы, он все еще внушал трепет. Фейнман приехал в Колумбийский университет прочитать лекцию о своей новой партонной теории. Партон[57] — это фейнмановский термин для гипотетических составляющих (частей) субъядерных частиц — протонов, нейтронов и мезонов. Сегодня мы называем их кварками и глюонами.

В то время Нью-Йорк был крупным центром физики высоких энергий. И средоточием этой деятельности был физический факультет Колумбийского университета. Физика здесь имеет замечательную и славную историю. И. А. Раби, пионер американской физики, основал в Колумбийском университете один из самых престижных в мире физических институтов, но к 1972 году его репутация слегка потускнела. Программа по теоретической физике в Белферской высшей научной школе при Университете Вшива, где я преподавал, была ничуть не хуже, но Коламбия есть Коламбия, и Белфер был далеко не так знаменит.

Лекции Фейнмана ждали с огромным нетерпением. Он занимал совершенно особое место в сердцах и умах физиков. Не только как один из величайших теоретиков всех времен, но и как подлинный кумир для каждого. Актер, шутник, барабанщик, хулиган, иконоборец, гигант интеллекта — он все делал простым и ясным. Все остальные часами просиживали со сложнейшими вычислениями, чтобы найти ответ на физическую задачу, а Фейнман за двадцать секунд объяснял ее так, что ответ становился очевиден.

Эго у Фейнмана было зверским, но рядом с ним было очень весело. Несколько лет спустя мы стали хорошими друзьями, но в 1972 году он был звездой, и я — вроде фаната, поджидающего у служебного выхода, — Джонни из захолустья к северу от 181-й улицы. Я приехал в Коламбию на метро за два часа до лекции, надеясь обменяться несколькими словами с великим человеком.

Факультет теоретической физики размещался на девятом этаже Пупин-Холла[58]. Я считал, что Фейнман должен где-то там тусоваться. Первым я увидел гуру колумбийских физиков Ли Чжэндао[59]. Я спросил его, нет ли поблизости профессора Фейнмана. «Что вам от него нужно?» — дружелюбно ответил Ли. «Ну, я бы хотел задать ему пару вопросов о партонах». — «Он занят». — Конец разговора.

На этом бы и закончилась история, если бы не зов природы. Зайдя в туалет, я увидел Дика, стоящего напротив писсуара. Встав рядом, я спросил: «Профессор Фейнман, могу ли я задать вам вопрос?» — «Да, но позвольте я закончу то, чем занимаюсь, и тогда мы пройдем в кабинет, который мне предоставили. А что за вопрос?» И вот прямо здесь и сейчас я решил, что у меня нет вопросов о партонах, но я могу кое-что придумать по поводу черных дыр. Термин «черная дыра» был предложен Джоном Уилером четырьмя годами раньше. Уилер был научным руководителем фейнмановской диссертации, но Фейнман сказал мне, что почти ничего не знает о черных дырах. То немногое, что знал я, было почерпнуто у моего друга Дэвида Финкелыптейна, одного из пионеров физики черных дыр. В1958 году Дэйв написал важную статью, в которой объяснял, что горизонт черной дыры является точкой невозврата. А еще я знал, что в центре черной дыры находится сингулярность, которую окружает горизонт.

Дэйв также объяснил мне, почему ничто не может выйти из-под горизонта. Последнее, что я знал, хотя сейчас не могу вспомнить откуда, было то, что, однажды образовавшись, черная дыра не может распасться или исчезнуть. Две или несколько черных дыр могут слиться, образовав более крупную черную дыру, но ничто и никогда не заставит ее разделиться на две или более черных дыры. Другими словами, если уж черная дыра сформировалась, от нее больше не избавиться.

Примерно в то же время молодой Стивен Хокинг занимался революционным преобразованием классической теории черных дыр. Среди его важнейших открытий был тот факт, что площадь горизонта черной дыры никогда не уменьшается. Стивен с сотрудниками Джеймсом Бардиным и Брэндоном Картером использовали общую теорию относительности для вывода набора законов, управляющих поведением черных дыр. Новые законы имели необъяснимое сходство с законами термодинамики (управляющими теплом), хотя подобие и считалось простым совпадением. Закон неубывания площади был аналогичен второму началу термодинамики, которое утверждает, что энтропия системы никогда не убывает. Сомневаюсь, чтобы я знал об этой работе или вообще слышал имя Стивена Хокинга ко времени той лекции Фейнмана, однако хокинговским законам динамики черных дыр предстояло оказывать глубочайшее влияние на мои исследования в течение более чем 20 лет.

Как бы то ни было, вопрос, который я хотел поставить перед Фейнманом, был о том, может ли квантовая механика заставить черную дыру распасться на черные дыры меньшего размера. Это представлялось мне чем-то вроде фрагментации очень большого атомного ядра на ядра меньшей величины. Я торопливо объяснил Фейнману, почему я думаю, что это должно происходить.







Последнее изменение этой страницы: 2017-01-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.226.243.36 (0.017 с.)