Леонард сасскинд битва при черной дыре мое Сражение со стивеном хокингом за мир, безопасный для квантовой механики 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Леонард сасскинд битва при черной дыре мое Сражение со стивеном хокингом за мир, безопасный для квантовой механики



Что вдыхает жизнь в эти уравнения и создает Вселенную, которую они могли бы описывать?

— Стивен Хокинг

Введение

Столько надо было грокнуть, а начинать приходилось почти что с нуля.

— Роберт Хайнлайн. Чужой в стране чужих

Где-то в восточноафриканской саванне немолодая львица выслеживает себе ужин. Она бы предпочла медлительную добычу преклонного возраста, но все, что есть, — лишь молодая резвая антилопа. Внимательные глаза жертвы идеально размещены по сторонам ее головы, чтобы в ожидании нападения держать под наблюдением всю окружающую местность. Глаза же хищника смотрят прямо вперед, фокусируясь на жертве и оценивая расстояние.

На этот раз «широкоугольные сканеры» антилопы пропустили хищника, подобравшегося на расстояние броска. Сильные задние лапы львицы толкают ее к перепуганной жертве. Извечная погоня начинается снова.

Пусть и обремененная годами, большая кошка — отличный спринтер. Поначалу отрыв сокращается, но от резких движений мощные мускулы львицы испытывают кислородное голодание и постепенно слабеют. Вскоре природная выносливость антилопы побеждает: в какой-то момент относительная скорость кошки и ее добычи меняет знак, сокращавшееся прежде отставание начинает расти. Львица чувствует, что фортуна ей изменила, Ее Королевское Величество признаёт поражение и возвращается в свою засаду в кустах.

Пятьдесят тысяч лет назад усталый охотник находит заваленный камнем вход в пещеру. Если отодвинуть тяжелое препятствие, получится безопасное место для отдыха. В отличие от своих обезьяноподобных предков, охотник стоит выпрямившись. Но в этой позе он безуспешно толкает валун. Выбирая более подходящий угол, он отставляет ноги подальше. Когда положение его тела оказывается почти горизонтальным, основная компонента приложенной силы начинает действовать в нужном направлении. Камень сдвигается.

Расстояние? Скорость? Перемена знака? Угол? Сила? Компонента? Что за невероятно сложные вычисления происходят в мозгу охотника, не говоря уже о кошке? Эти технические понятия обычно встречаются в учебниках физики для старших классов. Где кошка научилась измерять не только скорость добычи, но и, что более важно, относительную скорость? Брал ли охотник уроки физики, чтобы разобраться с понятием силы? И еще тригонометрии, чтобы использовать синусы и косинусы для вычисления компонент?

Истина, конечно же, в том, что у всех сложных форм жизни есть встроенные инстинктивные представления о физике, которые жестко «прошиты» эволюцией в их нервной системе[1]. Без этого предустановленного физического «софта» выжить было бы невозможно. Мутации и естественный отбор сделали всех нас физиками, даже животных. Большой объем мозга у людей позволил этим инстинктам развиться в понятия, которыми мы оперируем сознательно.

Самоперепрошивка

На деле все мы являемся классическими[2] физиками. Мы «нутром чувствуем» силу, скорость и ускорение. Роберт Хайнлайн в научно-фантастическом романе «Чужой в стране чужих» (1961) придумал слово «грокать»[3] для выражения этого глубоко интуитивного, почти физиологического понимания явления. Я грокаю силу, скорость и ускорение. Я грокаю трехмерное пространство. Я грокаю время и число 5. Траектории камня или стрелы поддаются гроканью. Но мой стандартный встроенный грокер ломается, когда я пытаюсь применить его к десятимерному пространству-времени, или к числу 101000, или, что еще хуже, к миру электронов и принципу неопределенности Гейзенберга.

С наступлением XX века наша интуиция попала в колоссальную аварию; физика неожиданно оказалась сбита с толку совершенно незнакомыми явлениями. Моему деду по отцовской линии было уже десять лет, когда Альберт Майкельсон и Эдвард Морли открыли, что орбитальное движение Земли сквозь гипотетический эфир невозможно зарегистрировать[4]. Электрон был открыт, когда деду стало за двадцать; когда ему стукнуло тридцать, была опубликована специальная теория относительности Альберта Эйнштейна, а когда он перешагнул порог средних лет, Гейзенберг открыл принцип неопределенности. Никаким способом эволюционный пресс не мог бы привести к выработке интуитивного понимания миров, столь радикально отличающихся от привычного нам. Но что-то в наших нервных системах, по крайней мере у некоторых из нас, оказалось готово к фантастической перепрошивке, позволяющей не только интересоваться малопонятными явлениями, но и создавать математические абстракции, порой совершенно контринтуитивные, для объяснения этих явлений и манипуляции с ними.

Скорость первой вызвала потребность в перепрошивке — огромная скорость, соперничающая с самим светом. Ни одно животное до двадцатого века не двигалось быстрее сотни миль в час (160 км/ч), и даже по сегодняшним меркам скорость света столь велика, что для всех, кроме ученых, он как бы и не движется вовсе, а просто мгновенно появляется, когда его включают. Древним людям не требовалось прошивок для работы со сверхвысокими скоростями, такими как скорость света.

Перепрошивка в вопросе о скорости произошла внезапно. Эйнштейн не был мутантом; десять лет, пребывая в полной безвестности, он бился над тем, чтобы заменить свою старую ньютоновскую прошивку. Но физикам того времени, должно было казаться, что среди них неожиданно появился человек нового типа — некто, способный видеть мир не как трехмерное пространство, а как четырехмерное пространство-время.

Потом Эйнштейн бился еще десять лет, на сей раз уже на виду у всех физиков, за объединение того, что он назвал специальной теорией относительности, с ньютоновской теорией гравитации. Итогом этих усилий стала общая теория относительности, которая глубоко изменила все наши традиционные представления о геометрии. Пространство-время стало пластичным, способным искривляться и сворачиваться. На присутствие материи оно реагирует в чем-то подобно резиновому листу, прогибающемуся под нагрузкой. Прежде пространство-время было пассивным, его геометрические свойства — неизменными. В общей теории относительности пространство-время становится активным игроком: оно может деформироваться массивными объектами, такими как планеты и звезды, но это невозможно представить без сложной дополнительной математики.

В 1900 году, за пять лет до появления на сцене Эйнштейна, другая, еще более удивительная смена парадигмы началась вслед за открытием того, что свет состоит из частиц, называемых фотонами или, иногда, световыми квантами. Фотонная[5] теория света была лишь предвестником грядущей революции; умственные упражнения на этом пути оказались намного абстрактнее всего, что встречалось прежде. Квантовая механика — это нечто большее, чем новый закон природы. Она вызвала изменение правил классической логики, то есть обычных правил мышления, которые каждый здравомыслящий человек использует в рассуждениях. Она казалась безумной. Но безумна она или нет, — физики смогли перепрошить себя в соответствии с новой логикой, которую называют квантовой. В главе 4 я объясню все, что вам понадобится знать о квантовой механике. Приготовьтесь, что будете сбиты столку. Это случается со всеми.

Относительность и квантовая механика с самого начала невзлюбили друг друга. Попытки насильственно их «поженить» имели катастрофические последствия — на каждый вопрос, заданный физиками, математика выдавала чудовищные бесконечности. Полвека ушло на то, чтобы помирить квантовую механику со специальной теорией относительности, но в конце концов математические несовместимости были устранены. К началу 1950-х годов Ричард Фейнман, Юлиан Швингер, Синъитиро Томонага и Фримен Дайсон[6] заложили фундамент для объединения специальной теории относительности и квантовой механики, получивший название квантовой теории поля. Однако общая теория относительности (эйнштейновский синтез специальной теории относительности с ньютоновской теорией гравитации) и квантовая механика оставались непримиримы, причем явно не от недостатка миротворческих усилий. Фейнман, Стивен Вайнберг, Брайс Де Витт и Джон Уилер пытались проквантовать уравнения Эйнштейна, но все получали в итоге лишь математический абсурд. Пожалуй, это было и неудивительно. Квантовая механика правила миром очень легких объектов. Гравитация, напротив, представлялась значимой только для очень тяжелых скоплений материи. Казалось, не существует ничего достаточно легкого, чтобы существенна была квантовая механика, и вместе с тем достаточно тяжелого, чтобы надо было учитывать гравитацию. В результате многие физики во второй половине двадцатого столетия считали поиски такой объединенной теории бесполезным занятием, подходящим лишь для сумасшедших ученых и философов.

Но другие считали такой взгляд близоруким. Для них мысль о двух несовместимых, даже противоречащих друг другу описаниях природы была интеллектуально непереносимой. Они верили, что гравитация почти наверняка играет важную роль в определении свойств мельчайших строительных блоков материи. Проблема лишь в том, что физика до них еще не докопалась. И на деле они оказались правы: с приближением к фундаменту мира, где расстояния слишком малы для непосредственного наблюдения, мельчайшие объекты сильнейшим образом воздействуют друг на друга посредством гравитации.

Сегодня широко признано, что гравитация и квантовая механика будут играть одинаково важные роли в определении законов поведения элементарных частиц. Но размеры фундаментальных строительных блоков природы столь невообразимо малы, что никого не удивит, если для их понимания вновь понадобится радикальная перепрошивка наших представлений. Новая схема, какой бы она ни оказалась, будет называться квантовой гравитацией. Даже не зная ее тонкостей, мы можем с уверенностью говорить, что новая парадигма будет использовать очень непривычные концепции пространства и времени. Представление об объективной реальности точек пространства и моментов времени исчезает, отправляясь в небытие вслед за одновременностью,[7] детерминизмом[8] и птицей додо. Квантовая гравитация описывает гораздо более субъективную реальность, чем мы могли себе представить. Как мы увидим в главе 18, это реальность, которая во многих отношениях подобна призрачной трехмерной иллюзии, даваемой голограммой.

Физики-теоретики стремятся обрести надежную опору в этой «стране чужих». Как и в прошлом, мысленные эксперименты выявляют парадоксы и конфликты между фундаментальными принципами. Эта книга посвящена интеллектуальной битве вокруг единственного мысленного эксперимента. В 1976 году Стивен Хокинг задумался о бросании порции информации — книги, компьютера, даже просто элементарной частицы — в черную дыру. Черные дыры, считал Хокинг, — это безвозвратные ловушки, и для внешнего мира упавшая порция информации будет необратимо потеряна. Это внешне невинное заключение далеко не столь безобидно, как кажется: оно способно подорвать и опрокинуть все величественное здание современной физики. Случился какой-то страшный сбой: под угрозой оказался самый фундаментальный закон природы — закон сохранения информации. Тем, кто следил за событиями, было ясно: либо Хокинг ошибается, либо трохсотлетняя цитадель физики падёт.

Но поначалу мало кто обратил на это внимание. Почти два десятилетия дискуссия протекала практически незаметно. Мы с великим голландским физиком Герардом 'т Хоофтом вдвоем являли собой всю армию, которая сражалась на одной стороне интеллектуального фронта. Стивен Хокинг с небольшой армией релятивистов был на другой стороне. Вплоть до начала 1990-х годов большинство физиков-теоретиков, особенно специалистов по теории струн, не реагировали на угрозу, которую несло утверждение Хокинга, а затем большинство из них сочли его выводы ошибочными. Во всяком случае — пока ошибочными.

Битва при черной дыре была подлинной научной дискуссией, совершенно непохожей на псевдодебаты вокруг «теории разумного замысла» или реальности глобального потепления, где фальшивые аргументы, придуманные политическими манипуляторами, чтобы морочить голову наивным людям, совершенно не отражают реальных научных разногласий. Напротив, спор о черных дырах был настоящим. Выдающиеся физики-теоретики не могли прийти к согласию о том, каким физическим принципам доверять, а от каких отказаться. Следовать за Хокингом с его консервативными представлениями о пространстве-времени или за 'т Хоофтом и мной с нашими консервативными взглядами на квантовую механику? Обе точки зрения, казалось, ведут к лишь парадоксам и противоречиям. Либо пространство-время — сцена, на которой работают законы природы, — совсем не такое, каким мы привыкли его себе представлять, либо ошибочны великие принципы возрастания энтропии и сохранения информации. Миллионы лет когнитивной эволюции и пара столетий физического опыта вновь одурачили нас, поставив перед необходимостью новой умственной перепрошивки.

Битва при черной дыре — это торжество человеческого разума и его замечательной способности открывать законы природы. Это рассказ о мире, куда более далеком от наших чувств, чем квантовая механика и теория относительности. Квантовая гравитация имеет дело с объектами, которые в сто миллиардов миллиардов раз меньше протона. Мы никогда экспериментально не обнаруживали столь малые предметы и, вероятно, никогда не обнаружим, но человеческая изобретательность позволила нам установить их существование, и удивительным образом порталами в их мир служат объекты с огромными массами и размерами — черные дыры.

Битва при черной дыре — это также хроника открытия. Голографический принцип — одна из самых контринтуитивных абстракций во всей физике. Он явился кульминацией почти двух десятилетий интеллектуальных сражений вокруг судьбы информации, падающей в черную дыру. Это не была битва между разгневанными врагами; на самом деле все основные участники битвы были друзьями. Но это была жестокая интеллектуальная борьба идей, ведущаяся людьми, которые глубоко уважают друг друга, однако имеют принципиальные разногласия.

Существует одно широко распространенное недоразумение, которое следует развеять. Люди часто представляют физиков, особенно физиков-теоретиков, как узколобых зануд, чьи интересы чужды обычным людям и очень скучны. Ничто не может быть дальше от истины. Великие физики, которых я знал, а их было немало, — это чрезвычайно харизматичные люди, с сильными чувствами и удивительными идеями. Мне бесконечно интересно разнообразие их личностей и способов мышления. Когда широкой публике рассказывают о физиках, обходя их человеческую сторону, то, на мой взгляд, упускают что-то очень важное. При написании этой книги я постарался ухватить эмоциональную сторону истории в той же мере, в какой и научную.



Поделиться:


Последнее изменение этой страницы: 2017-01-26; просмотров: 176; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.202.224 (0.009 с.)