ТОП 10:

Рождаются дочерние вселенные



Время от времени я получаю сообщения по электронной почте, которые всегда начинаются однотипно: «Я не ученый и слабо разбираюсь в физике и математике, но я думаю, что нашел решение проблемы, над которой вы и Хикинс… — иногда пишут «Хокинге», а порой «Хоскинс» —…работаете». Решение, предлагаемое в этих сообщениях, — это почти всегда дочерние вселенные. Где-то глубоко внутри черной дыры кусок пространства распадается и образует крошечную самодостаточную вселенную, отделенную от нашей области пространства-времени. (Я всегда представляю себе воздушный шарик с гелием, выскользнувший и улетевший.) Автор обычно доказывает, что вся информация, когда-либо упавшая в черную дыру, попадает в дочернюю вселенную. Это решает проблему: информация не уничтожается; она просто утекает куда-то в гиперпространство, надпространство, метапространство, или куда там деваются дочерние вселенные. Наконец, когда черная дыра Испаряется, разлом в пространстве заживаем, и, будучи отделенными! попавшие в переделку биты становятся абсолютно ненаблюдаемыми.

Дочерние вселенные — возможно, и не совсем глупая идея, особенно если допустить, что эти дочки вырастают. Наша Вселенная сама расширяется. Возможно, каждая дочерняя вселенная тоже Расширяется и в конце концов дозревает до полноценной вселенной с галактиками, звездами, планетами, собаками, кошками, людьми и своими собственными черными дырами. Но в качестве решения проблемы потерянной информации это просто бездоказательный уход от темы. Физика занимается наблюдениями и экспериментированием. Если дочерние вселенные уносят информацию, которая становится ненаблюдаемой, то для нашего мира результат будет точно такой же, как если бы информация уничтожалась, со всеми неприятными последствиями такого уничтожения[84].

Вариант с ванной

Данный вариант был наименее популярным возражением против хокинговской идеи. Эксперты по черным дырам и общей теории относительности отвергали его как «бьющий мимо цели». Тем не менее это была единственная возможность, которая имела смысл для меня. Представьте себе капли чернил, падающие в ванну с водой и несущие сообщение: буль, буль, кап, буль, кап, пропуск, кап, буль.

Очень быстро четко оформленные капли начинают растворяться, прочитать сообщение становится все труднее, а по воде расплываются чернильные облака.

 

Спустя несколько часов остается лишь ванна, заполненная однородной, чуть сероватой водой.

Хотя с практической точки зрения сообщение безнадежно зашумлено, принципы квантовой механики утверждают, что оно по-прежнему присутствует в хаосе огромного числа движущихся молекул. Но вскоре жидкость начинает испаряться из ванны. Молекула за молекулой, чернила и вода улетают в пустое пространство, оставляя ванну пустой и сухой. Информация исчезает, но уничтожается ли она? Хотя она зашумлена настолько, что нет никакой практической возможности ее восстановить, ни один бит информации не пропал. Что с ней случилось, вполне очевидно: она была унесена продуктами испарения, облаком молекул, улетевших в пространство.

Возвращаясь к черным дырам, рассмотрим, что происходит с провалившейся в них информацией при их испарении. Если черная дыра чем-то похожа на ванну, то ответ будет таким же: все биты информации в конечном счете передаются фотонам или другим частицам, уносящим энергию черной дыры. Другими словами, информация сохраняется среди многочисленных частиц, составляющих хокинговское излучение. Мы с 'т Хоофтом были убеждены, что так оно и есть. Но практически никто из специалистов по черным дырам нам не верил.

Есть и другой способ понимания информационного парадокса Стивена. Вместо того чтобы позволить черной дыре исчезнуть, мы будем, по мере того как она испаряется, подкармливать ее новыми предметами — компьютерами, книгами, компакт-дисками — как раз в таком темпе, чтобы не позволять ей уменьшаться. Иначе говоря, мы будем восполнять черной дыре ее потери бесконечным потоком информации, чтобы предотвратить ее уменьшение. Согласно Хокингу, черная дыра, хотя и не растет (она испаряется по мере того, как мы ее подкармливаем), информацию заглатывает как будто бы без всяких ограничений.

Все это напоминает любимый мной в детстве цирковой номер. Больше всего мне нравились клоуны, а из всех их номеров наиболее впечатлял меня фокус с клоунским вагончиком. Я не знаю, как они это проделывали, но в очень маленькую кабинку втискивалось поразительное число клоунов. Но что, если в вагончик залезает нескончаемый поток клоунов, а обратно никто не выходит? Это же не может продолжаться бесконечно, правда? Клоунская емкость любого вагона конечна, и когда она целиком заполнена, то хоть что-то — может, клоуны, а может, сосиски — должно начать выходить обратно.

Информация как клоуны, а черные дыры — как их вагончик. Для черной дыры данного размера есть предельное число битов, которое она может содержать. Вы уже можете догадаться, что этот предел есть энтропия черной дыры. Если черная дыра подобна другим объектам, то, когда емкость заполнена, либо дыра должна начать расти, либо информация должна начать просачиваться наружу. Но как она может просачиваться, если горизонт на самом деле является точкой невозврата?

Неужели Стивен был так бестолков и не видел, что хокинговское излучение может содержать скрытую информацию? Конечно нет. Несмотря на свою молодость, Стивен знал о черных дырах по крайней мере не меньше, чем кто-либо другой, и намного больше, чем я. Он очень глубоко продумал аналогию с ванной и нашел серьезное основание, чтобы ее отвергнуть.

Геометрия шварцшильдовской черной дыры к середине 1970-х годов была полностью ясна. Всякий, кто был в теме, рассматривал горизонт в качестве точки невозврата. И как в аналогии со сточным отверстием, эйнштейновская теория предсказывала, что всякий, кто по неосторожности пересечет горизонт, не заметит при этом ничего особенного: горизонт — это математическая поверхность, не имеющая физического воплощения.

В души релятивистов были внедрены следующие два важнейших факта.

♦ На горизонте нет препятствий, способных помешать объекту его пересечь и попасть внутрь черной дыры.

♦ Ничто: ни фотон, ни какого-либо типа сигнал — не может вернуться назад из-за горизонта. Чтобы это сделать, понадобилось бы превысить скорость света, а это, согласно Эйнштейну, невозможно.

Чтобы максимально все это прояснить, вернемся к бесконечному озеру из главы 2 с опасным стоком в центре.

Рассмотрим бит информации, плывущий по течению. Пока он не прошел точку невозврата, его еще можно вернуть назад. Но возле этой точки нет никакого предупреждения; бит проплывет мимо нее, и как только это случится, он не сможет вернуться, не превышая ограничение скорости. Теперь бит навсегда потерян.

Математика общей теории относительности не оставляла сомнений относительно горизонтов черных дыр. Это были просто ничем не отмеченные точки невозврата, не создающие никаких препятствий для падающих объектов.

Такое понимание глубоко укоренилось в сознании всех теорфизиков. Именно по этой причине Хокинг был уверен, что биты не только проваливаются сквозь горизонт, но также навсегда теряются для внешнего мира. Открыв, что черные дыры испаряются, Стивен заключил, что информация не может уходить вместе с этим излучением. Она должна оставаться — но где? После испарения черной дыры не будет никакого места, где она могла бы скрываться.

Я покидал Вернера в дурном настроении. По меркам Сан-Франциско было очень холодно, я был в легкой куртке, не помнил, где припарковал машину, и очень злился на своих коллег. Перед уходом я попытался обсудить с ними аргументы Стивена и был удивлен явным отсутствием любопытства и обеспокоенности. Группа состояла в основном из физиков-ядерщиков, которые не особо интересовались гравитацией. Как и Фейнман, они считали, что планковский масштаб столь далек, что он не может влиять на свойства элементарных частиц. Рим был в огне, и гунны — у ворот, но никто этого не замечал.

По пути домой трафик был таким плотным, что движение на 101-м шоссе[85] периодически останавливалось. Я никак не мог выкинуть из головы утверждение Стивена. Стоя в пробке, я нарисовал на заиндевевшем ветровом стекле пару диаграмм и уравнений, но так и не нашел никакого выхода. Либо информация теряется, и тогда фундаментальные законы физики требуют полнейшего пересмотра, либо что-то эйнштейновская теория гравитации совершенно не работает вблизи горизонта черной дыры.

Как воспринял все это 'т Хоофт? Я бы сказал, очень ясно. Его неприятие хокинговских заявлений было несомненным. Точку зрения Герарда я опишу в следующей главе, но сначала надо объяснить смысл S-матрицы, его самого сильного оружия.

11
Датское сопротивление

Давайте начнем с одной долгой истории, причем случившейся не с нами, а с некой планетной системой, центральная звезда которой в десять раз тяжелее Солнца. Эта система не всегда была планетной; она берет начало в гигантском облаке газа, в основном из атомов водорода и гелия, но с примесью всех остальных элементов периодической таблицы. Вдобавок там есть свободные электроны и ионы. Иными словами, все начинается с очень разреженного облака частиц.

И тут за дело берется гравитация. Облако начинает само себя притягивать. Под действием собственного веса оно сжимается, и в этом процессе гравитационная потенциальная энергия превращается в кинетическую. Частицы движутся все быстрее, тогда как пространство между ними уменьшается. Уплотняясь, облако разогревается, пока наконец не станет настолько горячим, чтобы зажечься и стать звездой. Однако звезда захватывает не весь газ; кое-что остается на орбите и сжимается в планеты, астероиды, кометы и прочий мусор.

Проходит десять миллионов лет, и вот звезда исчерпала запасы водорода. В этот момент начинается короткий — длительностью, возможно, всего несколько сотен тысяч лет — период ее жизни в форме красного сверхгиганта. Наконец она умирает, порождая в катастрофическом, направленном внутрь себя взрыве черную дыру.

Потом медленно, очень медленно черная дыра излучает свою массу. Хокинговское испарение рассеивается в пространстве, унося энергию в форме фотонов и других частиц. Спустя ужасающе долгий отрезок времени — что-то около 1068 лет — черная дыра исчезает в финальной вспышке высокоэнергичных частиц. К тому времени планеты давно уже распались на элементарные частицы.

Частицы приходят, и частицы уходят — таков ход истории. Все столкновения элементарных частиц, включая и те, что происходят в лабораториях, начинаются и заканчиваются одинаково: частицы сближаются и затем расходятся, а в промежутке между ними что-то случается. Так почему же долгая история звезды, пусть даже включающая на каком-то этапе черную дыру, фундаментально отличается от любого столкновения элементарных частиц? Герард 'т Хоофт как раз и полагал, что никакой разницы нет, и это может быть ключом к объяснению ошибки Хокинга.

Столкновения как атомов, так и элементарных частиц описываются математическим объектом, называемым S-матрицей, где S происходит от слова scattering — рассеяние. S-матрица — это гигантская таблица для всех возможных обстоятельств и результатов столкновения с численными значениями, которые можно пересчитать в вероятности. Это, конечно, не таблица, напечатанная в виде толстой книги, а определенная математическая абстракция.

Рассмотрим электрон и протон, которые движутся навстречу друг другу вдоль горизонтальной оси со скоростями соответственно 20 и 4 % от скорости света. С какой вероятностью конечным результатом их столкновения станут электрон, протон и еще четыре фотона? S-матрица — это математическая таблица таких вероятностей (строго говоря, амплитуд вероятности), которая сводит воедино квантовую историю столкновения. 'т Хоофт, как и я, был глубоко убежден, что вся история звезды (газовое облако → планетная система → красный гигант → черная дыра → хокинговское излучение) может быть сведена к единой S-матрице.

Одним из самых важных свойств S-матрицы является обратимость. Чтобы помочь разобраться в значении этого термина, я приведу экстремальный пример. Наш мысленный эксперимент включает столкновение двух «частиц». Одна из них будет довольно необычной. Это не одиночная элементарная частица, а огромное число атомов плутония. Фактически эта крайне опасная частица представляет собой атомную бомбу со столь чувствительным взрывателем, что он может сработать под воздействием одного-единственного электрона.

Другая частица, участвующая в столкновении, как раз и будет электроном. Итак, на входе таблицы S-матрицы мы имеем бомбу и электрон. А что будет на выходе? Хаос. Беспорядочное извержение атомов горячего газа, нейтронов, фотонов и нейтрино. Конечно, настоящая S-матрица будет невероятно сложна. В ней должны быть детально перечислены все образующиеся фрагменты вместе с направлениями и скоростями их движения, а затем указана соответствующая амплитуда вероятности, и так для каждого возможного исхода. Неизмеримо упрощенная версия S-матрицы могла бы выглядеть примерно так:[1][86]

Теперь вернемся к обратимости. S-матрица обладает тем свойством, что у нее есть обратная матрица. Это свойство — математическое выражение закона, говорящего о том, что информация никогда не теряется. Обратная S-матрица — это оператор, который возвращает назад изменения, производимые S-матрицей. Другими словами, это в точности то же самое, что я описывал раньше, говоря об обращении законов. Обратная S-матрица заставляет все идти в обратную сторону — от выхода к входу. Можно говорить об этом как о развороте направления движения всех результирующих частиц в тем самым об обращении всей системы, как в фильме, запущенном задом наперед. Если по окончании столкновения применить операцию обращения (развернуть все назад), фрагменты станут сближаться и собираться в исходную бомбу, включая все высокоточные цепи и чувствительные механизмы. И, да, конечно, там будет исходный электрон, теперь уже улетающий прочь от бомбы. Иными словами, S-матрица не только предсказывает будущее по прошлому, но также позволяет реконструировать прошлое по будущему. S-матрица — это код, устройство которого гарантирует, что никакая информация никогда не теряется.

Однако такой эксперимент очень сложен. Любая ничтожная ошибка — единственный искаженный фотон — разрушит код. В частности, нельзя подглядывать или иным образом взаимодействовать ни с одной частицей, пока не совершится обращение. В противном случае вместо исходной бомбы и электрона получится еще больший хаос.

Герард 'т Хоофт вступил в Битву при черной дыре под знаменем S-матрицы. Его позиция была совершенно прямолинейной: образование и последующее испарение черной дыры — просто очень сложный пример столкновения частиц. В фундаментальном плане это ничем не отличается от столкновения электрона с протоном в лаборатории. На самом деле если бы удалось в невероятной пропорции увеличить энергию электрона и протона, то их столкновение породило бы черную дыру. Коллапс газового облака — лишь один из способов создания черной дыры. При наличии достаточно большого ускорителя всего из двух частиц можно создать черную дыру, Которая затем испарится.

Для Стивена Хокинга тот факт, что S-матрица предполагает сохранение информации, доказывал ошибочность такого описания истории черной дыры. С его точки зрения, точная информация о газовом облаке — состояло ли оно из водорода, гелия или веселящего газа — уходит в сток за точкой невозврата и пропадает, когда черная дыра испаряется. Был исходный газ комковатым или однородным, сколько именно в нем было частиц — все эти подробности теряются навсегда. Разворот всех результирующих частиц и прослеживание обратного хода всех событий не приведут к реконструкции исходного состояния. По Хокингу, обращение конечного излучения породит лишь еще более однородное хокинговское излучение.

Если Хокинг прав, то весь процесс «частицы → черная дыра → хокинговское излучение» нельзя описывать обычной математикой на основе S-матрицы. Поэтому Стивен придумал ей на замену новую концепцию. У нового кода была дополнительная степень случайности, ведущая к стиранию исходной информации. Чтобы заменить S-матрицу, Стивен изобрел «He-S-матрицу». Он обозначил ее символом «$», и ее стали называть доллар-матрицей.

Подобно S-матрице, доллар-матрица — это закон, связывающий то, что на входе, с тем, что на выходе. Но вместо сохранения различий, унаследованных от начальной точки, в случае черной дыры доллар-матрица, наоборот, размывает эти различия, пока не становится безразлично, что было на входе — Алиса, бейсбольный мяч или трехдневная пицца, — после обращения все равно получается одно и то же. Бросьте в черную дыру свой компьютер со всеми файлами. Назад выйдет совершено однородное хокинговское излучение. Если обратить это действие, S-матрица соберет компьютер, однако из $-матрицы будет вытекать все то же однородное хокинговское излучение. Согласно Хокингу, вся память о прошлом теряется в сердце временно возникшей черной дыры.

Это была весьма досадная патовая ситуация. Герард говорил: S-матрица, Стивен говорил: $-матрица. Аргументы Стивена были ясными и убедительными, но вера Герарда в законы квантовой механики была непоколебимой.

Возможно, как говорят некоторые, мы с Герардом противостояли выводам Стивена, поскольку как физики занимались элементарными частицами, а не теорией относительности. Почти вся методология физики частиц вращается вокруг того принципа, что столкновения управляются обратимой S-матрицей. Но я не думаю, что мы отказывались отбросить этот закон из-за «элементарночастичного» шовинизма. Всю физику, не только теорию черных дыр, поглотила бы преисподняя, если бы дверь для потерь информации была открыта. Брошенный Стивеном вызов поджег фитиль целой пачки теоретического динамита.

Учитывая это, пришло, пожалуй, время объяснить, почему физики считают, что взрыв бомбы может быть обратимым. Это, конечно, невозможно опробовать в лаборатории. Но представим, что мы способны поймать все разлетающиеся атомы и фотоны и развернуть их назад. Если сделать это с бесконечной точностью, то законы физики приведут к воссозданию бомбы. Но любая мельчайшая ошибка, возможно единственный потерянный фотон или даже крошечная погрешность в определении направления этого фотона, приведет к катастрофе. Малейшая неточность склонна разрастаться. Единственный сперматозоид, не достигший своей цели, мог изменить историю, если он принадлежал, скажем, отцу Чингисхана. В бильярде ничтожное изменение в первоначальной расстановке шаров или направлении первого удара растет с каждым столкновением, приводя к совершенно иному результату. Так же происходит и при взрыве бомбы, и при столкновении пары высокоэнергичных частиц: малейшая ошибка в обращении их движений — и результат не будет иметь ничего общего с первоначальной бомбой или исходными частицами.

Так почему же мы так уверены, что идеальное обращение всех фрагментов восстановит бомбу? Мы знаем об этом потому, что фундаментальные математические законы атомной физики обратимы. Эти законы были проверены с невероятной точностью в случаях намного более простых, чем бомбы. Бомба — это не более чем совокупность атомов. Конечно, слишком трудно проследить за Движениями 1027 атомов в процессе взрыва, однако наше знание атомных законов очень надежно.

Но чем же заменяются атомы и законы атомной физики, когда врывающаяся бомба заменяется испаряющейся черной дырой? Хотя у 'т Хоофта было много блестящих идей относительно природы горизонта, ясного ответа на этот вопрос он не дал. Нет, он, Конечно, знал, что заменой атомам должны быть микроскопические объекты, которые придают горизонту энтропию. Но что это такое и по каким именно законам они движутся, объединяются, разделяются и сочетаются? 'т Хоофт этого не знал. Хокинг и большинство релятивистов просто отбрасывали идею такого микроскопического обоснования, заявляя: «Второе начало термодинамики говорит нам, что физические процессы не могут быть обращены».

На самом деле второе начало утверждает не это. Оно говорит, что обратить физику невероятно трудно и малейшая ошибка похоронит все усилия. Более того, необходимо точно знать все детали — микроструктуру, — или неудача неминуема.

Сам я в те ранние годы противостояния считал, что верна S-матрица, а не $-матрица. Но просто сказать «S на $» было бы неубедительно. Лучшее, что можно было сделать, — это попытаться открыть загадочное микроскопическое происхождение энтропии черной дыры. И прежде всего это было нужно для понимания того, где кроется ошибка в рассуждениях Стивена.

12
Чья забота?

Никто никогда не станет использовать хокинговское излучение для лечения рака или совершенствования парового двигателя. Черные дыры никогда не станут использовать для хранения информации или поглощения вражеских боеголовок. Хуже того, в отличие от физики элементарных частиц или межгалактической астрономии — двух дисциплин, которые, видимо, тоже никогда не найдут практического применения, — квантовая теория испарения черных дыр, вероятно, никогда не будет даже проверена прямыми наблюдениями или экспериментами. Так зачем же тогда кто-то тратит на нее свое время?

Прежде чем ответить на этот вопрос, позвольте мне объяснить, почему хокинговское излучение вряд ли когда-либо удастся пронаблюдать. Давайте перенесемся в будущее, когда можно будет достаточно близко подобраться к астрономической черной дыре, чтобы в подробностях ее рассмотреть. Но и тогда не будет шансов наблюдать ее испарение по одной простой причине: ни одна черная дыра сейчас не испаряется. Как раз наоборот, все они поглощают энергию и растут; даже самая одинокая черная дыра окружена теплом. Самые пустынные области межгалактического пространства, настолько холодные, насколько это возможно, все же теплее черной дыры звездной массы. Пространство заполнено чернотельным излучением (фотонами), оставшимися после Большого взрыва. Самые холодные места во Вселенной раскалены до целых трех градусов выше абсолютного нуля, в то время как самая теплая черная дыра в сотни миллионов раз холоднее.

Самопроизвольно тепловая энергия всегда течет от теплого к холодному и никогда в обратном направлении, так что излучение более теплых частей космоса перетекает в холодные черные дыры. Вместо того чтобы испаряться и сжиматься, как было бы при температуре космоса, равной абсолютному нулю, реальные черные дыры постоянно поглощают энергию и растут.

Когда-то космос был гораздо горячее, чем сейчас, а в будущем расширение Вселенной сделает его намного холоднее. В конце концов, спустя сотни миллиардов лет, он остынет настолько, что станет холоднее звездных черных дыр. Когда это случится, черные дыры начнут испаряться. (Будет ли тогда кому это наблюдать? Кто знает, но будем оптимистами.) И все равно испарение будет чрезвычайно медленным — чтобы увидеть хоть малейшее изменение в массе и размерах черной дыры, понадобится как минимум 1060 лет, — так что маловероятно, чтобы кто-нибудь сумел заметить уменьшение черной дыры. Наконец, даже если в нашем распоряжении будет все время Вселенной, нет никакой надежды расшифровать информацию, уносимую хокинговским излучением.

Вели попытки дешифровать сообщения, содержащиеся в хокинговском излучении, столь безнадежны, что нет никакого смысла их предпринимать, почему же эта проблема до сих пор так волнует физиков? Ответ звучит до некоторой степени эгоистично: мы занимаемся этим, чтобы удовлетворить свое любопытство относительно устройства мира и того, как взаимосвязаны законы физики.

На самом деле то же самое можно сказать про большую часть физики. Порой прагматичные вопросы приводят к глубоким научным исследованиям. Например, паровой инженер Сади Карно революционизировал физику, пытаясь построить улучшенный паровой двигатель. Но гораздо чаще к смене парадигм в физике приводило чистое любопытство. Любопытство — оно как зуд — все время тянет почесать. И у физика ничто не зудит сильнее, чем парадокс, несовместимость между разными вещами, о которых, как ему кажется, он все знает. Незнание того, как что-то работает, — тоже достаточно неприятно, но обнаружение противоречия между уже хорошо известными представлениями просто непереносимо, особенно когда сталкиваются самые фундаментальные принципы. Будет нелишним напомнить несколько таких столкновений и показать, как они приводили физику к весьма далеко идущим выводам.

Древнегреческие философы оставили парадоксальное наследие из двух несовместимых теорий, описывающих два совершенно отдельных мира явлений — небесных и земных. Мир небесных тел ныне относится к ведению астрономии. Считалось, что он лучше, чище, совершеннее — это прекрасный мир вечного и точного движения. Согласно Аристотелю, каждое небесное тело двигалось по одной из пятидесяти пяти идеальных концентрических кристаллических сфер.

Напротив, законы земных явлений считались испорченными. Движение по безобразной поверхности Земли всегда было делом тяжким. Нагруженная повозка, качаясь и скрипя, остановится, если ее перестанет тянуть лошадь. Куски материи буквально падают на землю и остаются там валяться. Эти основные законы управляют четырьмя элементами: огонь поднимается, воздух парит, вода падает, земля тонет, погружаясь до самой нижней точки.

Греки, похоже, были совершенно удовлетворены этими двумя совершенно разными наборами законов. Однако Галилей и в еще большей мере Ньютон посчитали такую дихотомию нетерпимой. Галилей просто придумал эксперимент, опровергающий представление о двух отдельных системах законов природы. Он представил, что стоит на вершине горы и бросает с нее камни: сначала так, чтобы камень упал в нескольких метрах от ног; затем сильнее, чтобы он пролетел несколько тысяч километров, прежде чем упасть; и, наконец, еще сильнее, так что камень облетит Землю по круговой орбите. Это создает новый парадокс: почему законы земных явлений столь сильно отличаются от законов небесных явлений, если земной камень может стать небесным телом?

Ньютон, родившийся в год смерти Галилея, разрешил эту загадку. Он понял, что один и то же закон гравитации заставляет яблоко падать с дерева и удерживает Луну на орбите вокруг Земли, а Землю на орбите вокруг Солнца. Ньютоновские законы движения и тяготения были первой системой всеобщих физических законов. Знал ли Ньютон, насколько полезными они окажутся для будущих авиакосмических инженеров? Вряд ли его это заботило. Им двигало любопытство, а не прагматика.

В другой раз великий зуд возник в голове Людвига Больцмана, И он стал ее усиленно чесать. И вновь было столкновение принципов: как может однонаправленный закон, всегда требующий возрастания энтропии, сосуществовать с обратимыми ньютоновскими законами движения? Если, как считал Лаплас, мир состоит из частиц, подчиняющихся законам Ньютона, то должна быть возможность запустить их в обратную сторону. В конце концов Больцман решил проблему, сначала поняв, что энтропия — это скрытая микроскопическая информация, а затем — что энтропия не всегда увеличивается. Время от времени происходят маловероятные события. Вы тасуете колоду, и чисто случайно карты складываются строго по возрастанию достоинства, причем черви идут за бубнами, которые следуют за трефами, а те — за пиками. Однако события, уменьшающие энтропию, — это очень редкие исключения. Больцман разрешил парадокс, сказав, что энтропия почти всегда возрастает. Сегодня статистический взгляд Больцмана на энтропию стал основанием для прикладной науки об информации, но для него самого загадка энтропии была лишь страшным зудом, который заставлял чесаться.

Интересно, что в случаях Галилея и Больцмана противоречия были выявлены не в результате нового экспериментального открытия. Ключом каждый раз оказывался правильный мысленный эксперимент. Галилеев эксперимент по бросанию камней и Больцманов — по обращению времени никогда не были осуществлены; достаточно было лишь размышлять о них. Но величайшим мастером мысленного эксперимента был Альберт Эйнштейн.

Два глубочайших противоречия не давали покоя в начале XX века. Первым был конфликт между принципами ньютоновской физики и максвелловской теории света. Принцип относительности, который мы привыкли ассоциировать с Эйнштейном, на самом деле восходит к Ньютону и даже к Галилею. Это простое утверждение о том, как выглядят законы физики из разных систем отсчета. Чтобы понять это, представим себе циркового артиста, жонглирующего шарами, который сел на поезд, чтобы отправиться в другой город. В дороге он захотел немного потренироваться. Но он никогда не жонглировал в движущемся поезде и задается вопросом: «Понадобится ли мне компенсировать движение поезда всякий раз, когда я подбрасываю шар в воздух и ловлю его? Надо прикинуть. Поезд движется на запад. Так что ловить брошенный шар я должен немного восточнее». Он пробует поступить так с одним шаром. Пока тот летит, ловящая рука движется на восток, и — бах! — шар падает на пол. Жонглер пробует снова, на этот раз уменьшая величину восточной компенсации. Опять неудача.

Надо сказать, что поезд попался очень высокого качества. Рельсы, по которым он идет, столь гладкие, а подвеска у вагонов такая замечательная, что движение совершенно неощутимо для пассажиров. Жонглер усмехается и говорит сам себе: «Понятно. Я просто не заметил, как поезд затормозил и остановился. Пока мы не поедем, я могу упражняться обычным образом. Вернусь-ка я обратно к старым добрым правилам жонглирования». И тут все получается замечательно.

Вообразите же удивление жонглера, когда, взглянув в окно, он видит местность, уносящуюся назад со скоростью добрых 150 км/ч. Глубоко озадаченный жонглер просит разъяснений у своего друга клоуна (на самом деле гарвардского профессора физики на каникулах). И вот что отвечает клоун: «Согласно принципам ньютоновской механики, законы движения одинаковы во всех системах отсчета, если они равномерно движутся друг относительно друга. Поэтому правила жонглирования совершенно одинаковы и в системе отсчета, покоящейся на земле, и в системе отсчета, движущейся вместе с плавно идущим поездом. Невозможно обнаружить движение поезда с помощью какого-либо эксперимента, целиком выполняемого внутри железнодорожного вагона. Только взглянув в окно, можно сказать, что поезд движется по отношению к земле, и даже тогда вы не сможете сказать, что именно движется — поезд или земля. Все движения относительны». Пораженный жонглер берет свои шары и продолжает упражняться.

Все движения относительны. Движение железнодорожного вагона со скоростью 150 км/ч, движение Земли вокруг Солнца со скоростью 30 км/с и движение Солнечной системы вокруг галактики со скоростью 200 км/с — все это необнаружимо, пока протекает гладко.

Гладко? Что это значит? Рассмотрим жонглера в момент отправления поезда. Внезапно состав трогается. При этом не только пиры смещаются назад, но и сам жонглер может повалиться на Пол. Когда поезд останавливается, тоже происходит нечто подобное. Или, допустим, поезд проходит по резкому изгибу рельсов. Определенно во всех этих ситуациях правила жонглирования потребуют модификации. Что за новый ингредиент в них добавится? Ответ — ускорение.

Ускорение означает изменение скорости. Когда железнодорожный вагон начинает движение или когда он неожиданно останавливается, скорость меняется и возникает ускорение. А что в случае прохождения поворота? Это менее очевидно, но истина все же в том, что и тут скорость изменяется — не по величине, но по направлению. Для физика любое изменение скорости — как по величине, так и по направлению — это ускорение. Так что принцип относительности надо уточнить:

Законы физики одинаковы во всех системах отсчета, которые равномерно (без ускорения) движутся друг по отношению к другу. Принцип относительности был впервые сформулирован примерно за 250 лет до рождения Эйнштейна. И почему же тогда Эйнштейн так знаменит? Потому что он обнаружил очевидный конфликт между принципом относительности и другим принципом физики, который можно назвать принципом Максвелла. Как обсуждалось в главах 2 и 4, Джеймс Клерк Максвелл открыл современную теорию электромагнетизма — теорию всех электрических и магнитных сил в природе. Важнейшее достижение Максвелла состояло в раскрытии великой тайны света. Свет, доказал он, состоит из волн электрических и магнитных возмущений, движущихся сквозь пространство, подобно волнам по поверхности моря. Но для нас важнее всего то, что, как доказал Максвелл, свет в пустом пространстве всегда движется в точности с одной и той же скоростью — около 300 000 км/с2[87]. Именно это я и называю принципом Максвелла:

Независимо от того, как был порожден свет, он движется в пустом пространстве всегда с одной и той же скоростью.

Но теперь у нас возникает проблема — серьезное противоречие между двумя принципами. Эйнштейн был не первым, кто обеспокоился противоречием между принципом относительности и принципом Максвелла, но он более четко увидел проблему. И пока другие разбирались с экспериментальными данными, Эйнштейн, мастер мысленного эксперимента, разбирался с экспериментом, поставленным исключительно внутри его головы. По собственным воспоминаниям Эйнштейна, в 1895 году, когда ему было 16 лет, он сформулировал следующий парадокс. Представив себя в железнодорожном вагоне, движущемся со скоростью света, он наблюдает световую волну, движущуюся рядом с ним в том же направлении. Увидит ли он световой луч, стоящий неподвижно?

Во времена Эйнштейна не было вертолетной техники, но мы можем вообразить его парящим над морем со скоростью, в точности равной скорости океанских волн. Волны будут казаться застывшими. Точно так же, рассуждал шестнадцатилетний юноша, пассажир вагона (напоминаю, движущегося со скоростью света) обнаружит совершенно неподвижную световую волну. Каким-то образом в молодом возрасте Эйнштейн уже знал об уравнениях максвелловской теории достаточно для понимания того, что нарисованная им картина невозможна: принцип Максвелла гласит, что свет всегда движется с одинаковой скоростью. Если законы природы одинаковы во всех системах отсчета, тогда принцип Максвелла можно применить и к движущемуся поезду. Принцип Максвелла и принцип относительности Галилея шли лоб в лоб.

Эйнштейн расчесывал свой зуд десять лет, пока не нашел выхода из положения. В 1905 году он написал свою знаменитую статью «К электродинамике движущихся тел»[88], в которой сформулировал совершенно новую концепцию пространства и времени — специальную теорию относительности. Она радикально изменила представления о расстоянии и длительности, а в особенности то, что мы подразумеваем под одновременностью двух событий.







Последнее изменение этой страницы: 2017-01-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.233.229.90 (0.017 с.)