Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема: «Решение уравнений графическим способом»Содержание книги
Поиск на нашем сайте
Задание 1. Составить таблицу для вычислений значений функций для всех х на интервале [-2;2] с шагом 0,2, при k=10. Построить совмещенные графики функций. у1=(х2-1) y2=(х2-1)
Задание 2. Найти корни нелинейного уравнения 0,5х+1=(х-2)2 графически на интервале [-4;4] с шагом 1 и уточнить один из методов проб с точностью до 0,01. Для решения этой задачи данное уравнение преобразуем в систему уравнений. Для этого левую и правую часть уравнения приравниваем к нулю. Система будет иметь вид: Для решения полученной системы уравнений графическим способом чертим графики обоих уравнений и абсцисса точки пересечения является корнем системы уравнений и следовательно данного нелинейного уравнения. Разберем все шаги: 1. Необходимо составить таблицу значений данной функции. Для заполнения ячеек значениями х введите первые два значения, выделите обе ячейки и протяните маркер заполнения вправо. Для заполнения ячеек значениями у введите формулу в первую ячейку и заполните маркером заполнения вправо. Таблица должна принять вид:
2. Выделяем всю таблицу, в меню Вставка выбираем Диаграмма. Полученный график будет иметь вид:
3. Из графика видно, что первый корень находится в промежутке [0;1], второй - [3;4]. 4. Уточним первый корень (диапазон [0;1]). Для этого в таблице меняем значения х таким образом: вместо значения х=-4 записываем 0, а вместо -3 записываем 0,1. Выделяем обе ячейки и проводим маркером заполнения вправо. Таблица примет вид:
При этом график автоматически примет вид:
Из нового графика видно, что корень находится в интервале [0,7; 0,8]. Уточняем корень таким же образом до сотых. Таблица примет вид:
При этом график автоматически примет вид:
Получим ответ х=0,735 Таким же образом уточняем корень второго промежутка и находим х=3,06 Задание 3. Найти корни нелинейного уравнения х2+3=5-х2 графически на интервале [-5;5] с шагом 0,5. Примечание: присвоить у1=х2+3 и у2=5-х2, составить таблицу для вычислений значений, построить совмещенный график и найти точки пересечения двух графиков. Уточнить один из корней уравнения (точек пересечения) методом проб с точностью до 0,001.
Задание 4. Найти корень уравнения х3-6х2+9х+0,2=0 на интервале [-1;1] с шагом 0,2. Примечание: присвоить у=х3-6х2+9х+0,2, составить таблицу ля вычислений значений, построить график и найти точки пересечения графика с осью ОХ. Уточнить один из корней уравнения (точек пересечения) методом проб с точностью до 0,001.
Задание 5. Найти корень уравнения sinx+2cos2x-1=0 на интервале [3;4] с шагом 0,1. Уточнить один из корней уравнения (точек пересечения) методом проб с точностью до 0,001.
Задание 6. Составить таблицу для вычислений значений функций на интервале [-12;12] с шагом 1. Построить график следующих функций на одной координатной плоскости:
Задание 7. В одной координатной плоскости построить совмещенные графики функций с шагом 0,1. у1=ех хÎ[-1;1] =ЕХР(х) у2=lg x хÎ[-0,1;1] =LOG10(x) у3=lg x+ex хÎ[-0,1;1] =у1+у2
Задание 8. В одной координатной плоскости построить совмещенные графики функций для
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-17; просмотров: 339; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.44.145 (0.01 с.) |