Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Автоматизированные системы для распознавания патологических состояний методами вычислительной диагностикиСодержание книги
Поиск на нашем сайте
С начала 1960-х гг. при решении задач дифференциальной диагностики использовались методы математической статистики и распознавания образов (под образами понимаются классифицируемые классы — заболеваний, состояний). В России первыми применили вычислительную диагностику Н. М.Амосов и М.Л. Быховский. Вычислительная диагностика используется для решения задач: · клинической дифференциальной диагностики; · выявления лиц с повышенным риском заболевания при массовых профилактических или профессиональных осмотрах; · прогнозирования течения заболевания, эффективности лечения, оценки тяжести состояния, исхода заболевания. Примерный план действий при разработке алгоритма (решающего правила) для дифференциальной диагностики заболеваний (состояний, синдромов) в большинстве случаев состоит из четырех этапов. 1. Постановка задачи. Формулируется перечень заболеваний (синдромов, состояний), которые необходимо распознавать с помощью разрабатываемого правила. При этом необходимо учитывать, что все объекты (пациенты) должны описываться определенным набором параметров, с помощью которых предположительно можно будет распознать эти объекты. Формируется их перечень. Создается формализованная карта параметров с их градациями. Продумывается система (шкала) кодирования градаций параметров. 2. Формирование обучающей выборки. Чтобы приступить к решению задачи дифференциальной диагностики, нужно иметь некоторое множество реальных историй болезни с известными верифицированными диагнозами, которые и будет распознавать построенное в будущем решающее правило. Такое множество необходимо для анализа материала с целью определения статистически «типичной» картины для каждого рассматриваемого заболевания (состояния, синдрома) — образа заболевания. Однако важно понимать, что в обучающую выборку должны войти все пациенты за определенный (обычно несколько лет) период работы клиники или случайно отобранные больные, соответствующие сформулированным критериям отбора. Неслучайный отбор пациентов может привести к разработке узконаправленного правила. Необходимо отметить, что сформировать обучающую выборку можно как на ретроспективном материале (по историям болезни), так и в проспективном исследовании. Чрезвычайно важны полнота собираемого клинического материала и его объем при минимальном числе пропущенных значений используемых параметров. Формализованные карты всех пациентов, входящих в обучающую выборку, заносятся в массив (например, в таблицу MS Excel), который впоследствии и будет обрабатываться для получения диагностического алгоритма. 3. Исследование параметров на информативность и минимизация их количества. Подходов к исследованию параметров на информативность при дифференциальной диагностике и решении задач прогнозирования достаточно много. Это и подсчет частот, и применение методов параметрической и непараметрической статистики для исследования различий средних значений выборок, точного метода Фишера, метода Байеса (например, для оценки диагностической информативности совокупности отобранных параметров) и др. Важно, что в результате такого исследования в рассмотрении остаются наиболее информативные параметры, число которых существенно сокращается, причем без ущерба для конечной цели — распознавания дифференцируемых состояний. Наоборот, повышение качества распознавания происходит при отборе наиболее информативных параметров, так как при этом отсеиваются параметры, создающие так называемый «шум», т.е. не имеющие дифференциально-диагностической ценности. Для минимизации количества параметров можно (и часто нужно) использовать математические методы, например корреляционный анализ. Если имеет место сильная корреляция, то один из пары параметров следует убрать из набора. В этом случае необходимо рассматривать как клинические аргументы, так и аргументы с позиции здравого смысла (например, какой из параметров труднее и дороже измерять, тот из пары и следует исключить). 4. Получение решающего правила и его оценка. Для получения диагностического алгоритма часто используют принципы кластеризации, методы множественного статистического анализа: дискриминантный, регрессионный, нейросетевой и др. В настоящее время для этого в большинстве случаев используют известные статистические пакеты: SPSS, Statistica и др. Два принципиально различных подхода к распознаванию — вероятностный (стохастический) и детерминистский — выдают решение в различной форме. При вероятностном подходе ответ сопровождается оценкой (обычно в процентах), указывающей на возможность того или иного диагноза (прогноза). При детерминистском однозначно указывается один из возможных вариантов ответа. Критериев качества распознавания несколько. Одним из них является процент правильных отнесений (или наоборот — число ошибок распознавания) на обучающей выборке. Принято оценивать чувствительность диагностического алгоритма и его специфичность. Чувствительность — доля пациентов с диагностированным заболеванием среди всех пациентов с данным заболеванием в обучающей выборке, т.е. отношение числа истинно положительных результатов к числу случаев с наличием заболевания. Специфичность — это доля пациентов с диагностированным заболеванием среди пациентов без данного заболевания в обучающей выборке, т.е. отношение числа истинно отрицательных результатов к общему числу случаев с отсутствием заболевания. Одним из способов оценки качества полученного диагностического алгоритма является проведение скользящего экзамена. Суть его заключается в том, что данные каждого пациента по очереди исключаются из обучающей выборки, процедура классификации повторяется без него, а затем данные исключенного пациента подставляются в полученное правило и оценивается правильность диагностики. Достаточно распространенным подходом к оценке полученного диагностического алгоритма остается его проверка на контрольной (экзаменационной) выборке ретроспективных данных и в опытной эксплуатации в проспективном исследовании. Этапы распознавания можно представить следующим образом: 1) предварительный анализ данных и минимизация пространства параметров; 2) классификация на обучающий выборке; 3) контроль результатов классификации на экзаменационной выборке. Весь описанный процесс разработки диагностических алгоритмов кроме первого этапа, на котором активно участвует врач как эксперт, и оценки эффективности полученного решающего правила обычно осуществляется с минимальным участием врача. Он является пользователем системы. Современные системы не только строят диагностическое заключение (нозологический диагноз, синдромальный диагноз и др.), но и представляют его в виде, облегчающем интерпретацию. Автоматизированные системы вычислительной диагностики могут быть полезны для начинающих врачей, клинических ординаторов, фельдшеров. В особенности это касается необходимости принятия решений в отношении редких заболеваний. Высокоэффективным является применение таких систем при неотложных состояниях (в условиях дефицита времени на принятие решений при небольшом объеме имеющейся о пациенте информации), особенно в дистанционном режиме. С конца 1970-х до середины 1980-х гг. в Российской Федерации осуществлялась масштабная программа по разработке и внедрению системы дистанционной консультативной диагностики (руководитель программы — С. А. Гаспарян). В ее реализации участвовали восемь медицинских вузов и клинических НИИ, три территориальных медицинских вычислительных центра. Целью разработки было создание системы вычислительной диагностики, позволяющей осуществлять дифференциальную диагностику заболеваний в дистанционном режиме при неотложных состояниях: нарушениях мозгового кровообращения, травмах черепа, ишемической болезни сердца, инфаркте миокарда, острых заболеваниях органов брюшной полости, таза, забрюшинного пространства, в том числе в педиатрической практике. В середине 1980-х гг. система была внедрена в 48 административных территориях РФ на базе круглосуточно работающих консультативных диагностических центров при отделениях санитарной авиации. Дистанционная диагностика осуществлялась путем телефонного или радиообщения между врачом, обратившимся за консультацией, и дежурным оператором центра (средним медицинским работником). Врач диктовал номера признаков формализованной карты осмотра больного дежурному оператору центра, который вводил эти данные в компьютер и передавал врачу результаты диагностического заключения. Пользователю передавался также перечень признаков, которые могли бы повысить качество диагностики при повторной обработке данных, и выдавалась рекомендация о времени повторного обращения в центр. В системе детского здравоохранения была создана ассоциация «Неотложная педиатрия» (руководитель — Э. К. Цыбулькин), объединившая ЛПУ более 10 регионов — пользователей системы дистанционного вычислительного консультирования. Средний уровень правильной диагностики, осуществляемой врачами районных и сельских больниц, в то время составлял 62 %. Анализ 40 тыс. консультаций, осуществленных консультативными диагностическими центрами, показал, что использование системы вычислительной диагностики позволило поднять уровень правильно диагностированных случаев до 87 %, а при повторной обработке данных на расширенном наборе признаков — до 95 %. Подобные разработки могут иметь хорошие перспективы для использования при дистанционной диагностике с помощью современных телемедицинских технологий (см. гл. 4). Системы для распознавания патологических состояний методами вычислительной диагностики могут использоваться как отдельно, так и в составе автоматизированных рабочих мест врачей разных профилей. Существенным недостатком большинства диагностических алгоритмов, построенных с помощью методов распознавания образов, была и остается непрозрачность их логики для медицинского персонала. Врачи, работающие с такими системами, пытаются интерпретировать хотя бы набор признаков, вошедших в диагностический алгоритм, но не могут понять логику решений автоматизированной системы.
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 328; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.149.158 (0.011 с.) |