Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Проектирование картов - Форсирование двигателей↑ Стр 1 из 6Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Проектирование картов - Форсирование двигателей Здесь не будет готовых рецептов по форсированию конкретных типов двигателей. Все двигатели разные, на разных шасси будут изменяться размеры отдельных элементов (например, выпускной системы), будут изменяться и характеристики. Поэтому, какие-то конкретные рецепты, в которых, тем не менее, останется немало белых пятен, могут привести лишь к бесполезной работе. Будут рассмотрены, в частности, основы теории процессов, происходящих в двигателе, с особым упором на те вопросы, которые являются основными при форсировании двигателя. Конечно, в предлагаемой главе рассматриваются только те разделы теории, знание которых необходимо, чтобы начинающий поклонник картинга не испортил двигатель в стремлении выжать из него максимальную мощность. Приведены также общие рекомендации о том, в каких направлениях следует проводить доработки двигателя, чтобы добиться положительных результатов. Общие указания иллюстрируются примерами из практических работ по форсированию картинговых двигателей. Кроме того, приводится ряд замечаний и практических рекомендаций относительно, казалось бы, мелких изменений, внесение которых улучшит работу двигателя, повысит его надежность, избавит нас от порой дорогостоящей учебы на собственных ошибках. Фазы газораспределения Фазы газораспределения выражаются углами поворота коленчатого вала, при которых открываются и закрываются соответствующие окна цилиндра. В двухтактном двигателе рассмотрим три фазы: открытия впускного окна, открытия выпускного окна и открытия перепускных окон (рис. 9.3). Фазой открытия окна, например, выпускного, назовем угол поворота коленчатого вала, измеряемый с момента, когда верхний край поршня откроет выпускное окно, до момента, когда поршень, двигаясь обратно, закроет окно. Аналогично можно определить фазы открытия остальных окон. Рис. 9.3. Диаграммы фаз газораспределения: a -симметричная; б- несимметричная; OD и ZD — открытие и закрытие впуска. ОР и ZP- открытие и закрытие перепуска; OW и ZW -открытие и закрытие выпуска; a,у- углы открытия соответственно впускного и выпускного окон; B — угол открытия перепускных окон
Рис. 9.4. Сравнение время-сечений (площадь под кривыми) для окон разной формы
В обычном поршневом двигателе все окна открываются и закрываются поршнем, поэтому диаграмма фаз газораспределения симметрична (или почти симметрична) относительно вертикальной оси (рис. 9.3, а). В картинговых двигателях, в которых наполнение кривошипной камеры горючей смесью осуществляется с помощью вращающегося золотника, фаза впуска может не зависеть от движения поршня, поэтому диаграмма фаз газораспределения имеет обычно несимметричный вид (рис. 9.3, б). Фазы газораспределения являются сравнимыми величинами для двигателей с разным ходом поршня, т. е. они служат универсальными характеристиками. При сравнении двигателей, имеющих одинаковый ход поршня, фазы газораспределения можно заменить расстояниями от окон, например, до верхней плоскости цилиндра. Кроме фаз газораспределения важным параметром является так называемое время-сечение. При постепенно открываемом поршнем окне от формы канала зависит, как увеличивается открытая поверхность окна в зависимости от угла поворота коленчатого вала (или времени). Чем шире окно, тем большая поверхность будет открываться при смещении поршня вниз. За одно и то же время через окно будет проходить большее количество горючей смеси. Целесообразно, чтобы при открытии окна поршнем его площадь была бы сразу как можно большей. Во многих двигателях для этого окно делается расширенным кверху. Благодаря этому достигается эффект быстрого открытия окна без увеличения его поверхности. Диаграмма роста открытой поверхности окон разной формы в зависимости от времени при постоянной ЧВ двигателя показана на рис. 9.4. Общая площадь окон в обоих случаях одинаковая. Площадь под кривыми диаграммы характеризует значение время-сечения. Для окна неправильной формы время-сечение больше. Системы продувки цилиндра
Рис. 9.10. Схема систем продувки цилиндра и соответствующие им развертки зеркала цилиндра: а — двухканальная система; б — трехканальная система; в — четырехканаль-ная система; г — пятиканальная система
Применяемые в картинговых двигателях системы продувки цилиндра схематически представлены на рис. 9.10. Рядом показано расположение перепускных окон на развертке зеркала цилиндра для каждой из систем: двух-, трех-, четырех- и пятиканальной. В тех двигателях, где наполнение картера регулируется поршнем, крывает и не закрывает впускное окно. В этом случае впускной патрубок сделан не в цилиндре, и появляется возможность разместить дополнительный перепускной канал. Роль выпускной системы В двухтактном двигателе огромную роль играет выпускная система, состоящая из выпускного патрубка (в цилиндре и за цилиндром), расширительной камеры и глушителя. В момент открытия выпускного окна в цилиндре имеется некоторое давление, которое снижается в выпускной системе. Газ расширяется, возникают ударные волны, которые отражаются от стенок расширительной камеры. Отраженные ударные волны вызывают новый рост давления около выпускного окна, в результате чего некоторая часть отработавших газов снова попадает в цилиндр (рис. 9.11). Рис. 9.11. Схематическое представление последовательных фаз выхода отработавших газов: а — открытие выпускного окна; б — полное открытие окна; в — закрытие окна
Кажется, что выгоднее было бы получить разрежение у выпускного окна, когда оно полностью открыто. Это вызовет откачивание газов из цилиндра и, тем самым, наполнение цилиндра свежей смесью. Однако в таком случае часть этой смеси вместе с отработавшими газами попадет в выпускной патрубок. Поэтому надо добиваться повышенного давления у выпускного окна, когда оно закрывается. В этом случае горючая смесь, попавшая вместе с отработавшими газами в выпускной патрубок, будет возвращена в цилиндр, заметно улучшая его наполнение. Происходит это уже после закрытия поршнем перепускных окон. Как и во впускной системе, волновые явления в выпускной системе дают положительный эффект только вблизи резонансной ЧВ. Изменяя размеры, а особенно длину выпускной системы, также можно формировать скоростные характеристики двигателя. Влияние изменений размеров выпускной системы на характеристики двигателя более значительно, чем изменение размеров впускной системы. Основы процесса сгорания Для лучшего понимания работы двигателя необходимо сказать несколько слов о процессах, происходящих в камере сгорания двигателя. От протекания процесса сгорания зависит нарастание давления в цилиндре, что определяет мощность двигателя. Результаты сгорания топлива, воспринимаемые в виде работы кривошипно-шатунного механизма, в первую очередь зависят от состава горючей смеси. Теоретически идеальным составом горючей смеси является так называемый стехиометрический состав, т. е. такой, при котором в смеси содержится столько топлива и кислорода, что после сгорания в отработавших газах нет ни топлива, ни кислорода. Другими словами, сгорит все находящееся в камере сгорания топливо, а для его сгорания будет израсходован весь кислород, содержащийся в горючей смеси. Если бы в камере сгорания был избыток воздуха (недостаток топлива), то избыток этот не смог бы помочь процессу горения. Однако он стал бы дополнительной массой газа, которую надо «прокачать» через двигатель и нагреть, используя для этого теплоту, которая без этой дополнительной массы повысила бы температуру и, следовательно, давление в цилиндре. Горючая смесь с избытком воздуха называется бедной. Столь же неблагоприятен недостаток воздуха (или избыток топлива). Это привело бы к неполному сгоранию топлива и, как следствие, к получению меньшей энергии. Избыток топлива при этом будет пропущен через двигатель и испарится. Горючая смесь с недостатком воздуха называется богатой. На практике для получения наибольшей мощности целесообразно использовать слегка обогащенную смесь. Это объясняется тем, что в камере сгорания всегда образуются локальные неоднородности состава горючей смеси, возникающие из-за того, что невозможно добиться идеального перемешивания топлива с воздухом. Оптимальный состав смеси может быть определен только опытным путем. Объем горючей смеси, засасываемой каждый раз в цилиндр, определяется рабочим объемом этого цилиндра. А вот масса воздуха, находящегося в этом объеме, зависит от температуры воздуха: чем выше температура, тем меньше плотность воздуха. Таким образом, состав горючей смеси зависит от температуры воздуха. Из-за этого необходимо «настраивать» двигатель в зависимости от погоды. В жаркий день в двигатель поступает теплый воздух, поэтому для сохранения соответствующего состава горючей смеси необходимо уменьшить подачу топлива. В холодный день масса поступающего воздуха возрастает, поэтому надо подавать больше топлива. Надо заметить, что на состав горючей смеси влияет также влажность воздуха. Вследствие всего этого температура даже идеального в данных условиях состава смеси значительно влияет на степень наполнения кривошипной камеры. В постоянном объеме картера при более высокой температуре масса горючей смеси будет меньше и, тем самым, после ее сгорания в цилиндре будет более низкое давление. Из-за этого явления элементам двигателя стараются придать такую форму, особенно картеру (оребрение), чтобы добиться их максимального охлаждения. Горение смеси в камере сгорания происходит с определенной скоростью, за время горения коленчатый вал поворачивается на определенный угол. Давление в цилиндре нарастает по мере горения смеси. Целесообразно получение наибольшего давления в тот момент, когда уже начался рабочий ход поршня. Чтобы этого добиться, смесь надо зажигать несколько раньше, с определенным опережением. Это опережение, измеряемое углом поворота коленчатого вала, называется углом опережения зажигания. Часто опережение зажигания удобнее измерять расстоянием, которое осталось пройти поршню до верхней мертвой точки. Диапазон доработок Прежде, чем приступить к работе над двигателем, надо решить, какой показатель мы хотим достичь. В пяти-, шестиступен-чатых двигателях гоночной категории мы можем стремиться к увеличению ЧВ, хотя известно, что в результате этого ЧВ максимального момента приближается к ЧВ максимальной мощности; мы уменьшаем диапазон рабочих оборотов, добиваясь взамен большей мощности. В двигателях популярной категории, а это двигатели «Дэмба» объемом 125 см3 с трехступенчатой коробкой передач, не следует стремиться к достижению слишком большой ЧВ, надо добиваться наибольшего диапазона рабочих ЧВ. В таких двигателях (используя его собственные узлы и агрегаты) можно добиться мощности более 10 кВт при частоте вращения порядка 7000—8000 об/мин. Необходимо также определить диапазон доработок, которые мы собираемся выполнить. Надо заранее знать, будет это внесение усовершенствований в дорабатываемый двигатель или же диапазон доработок будет столь широк, что в итоге получим практически новый двигатель с сохранением нескольких оригинальных (но доработанных) узлов, как того требуют правила. Предполагая доработку двигателя, предпочтение следует отдавать тем операциям, которые значительно повысят показатели двигателя. Однако не стоит (по крайней мере на этом этапе работ) предусматривать выполнение таких операций, которые требуют значительного труда и о которых заранее известно, что они дадут незначительные результаты. К таким операциям относится полирование всех каналов цилиндра двигателя, несмотря на то, что существует всеобщее убеждение в эффективности этой операции. Стендовые испытания многих двигателей показали, что полирование каналов цилиндра повышает мощность двигателя на 0,15—0,5 кВт. Как видите, усилия, затраченные на выполнение этой работы, совершенно несоизмеримы с результатами. Вот операции, которые несомненно повлияют на увеличение показателей двигателя: увеличение степени сжатия; изменение фаз газораспределения; изменение формы и размеров каналов и окон цилиндра; правильный подбор параметров впускной и выпускной систем; оптимизация опережения зажигания. Изменение степени сжатия Увеличение степени сжатия, получаемое путем уменьшения объема камеры сгорания, ведет к увеличению мощности двигателя. Увеличение степени сжатия ведет к росту давления сгорания в цилиндре за счет увеличения давления сжатия, улучшения циркуляции смеси в камере сгорания и увеличения скорости сгорания. Степень сжатия нельзя увеличивать до любой произвольной величины. Она ограничена качеством используемого топлива, а также тепловой и механической прочностью узлов двигателя. Достаточно сказать, что при увеличении эффективной степени сжатия с 6 до 10 силы, действующие на поршень, возрастают почти вдвое; т. е. вдвое возрастает нагрузка, например, на кривошипный механизм. С учетом прочности деталей двигателя и детонационных свойств доступных топлив не рекомендуется применять геометрическую степень сжатия больше 14. Увеличение степени сжатия до этого значения требует не только удаления прокладки (если она была), но и придания соответствующей формы головке цилиндра, а иногда и цилиндру. Для облегчения расчета объема камеры сгорания для разных степеней можно пользоваться диаграммой, показанной на рис. 9.17. Каждая из кривых относится к определенному рабочему объему цилиндра. Рис. 9.17. Диаграмма зависимости степени сжатия а от объемов камеры сгорания V1= 125 см3 и V2 —50 см3 В некоторых двигателях с относительно небольшой степенью сжатия ее значительное увеличение возможно только путем механической обработки. В этом случае заплавляют камеру сгорания и снова обрабатывают ее. Это позволяет также изменить форму камеры. Большинство современных двигателей, применяемых в картинге, имеют камеру сгорания в виде шляпы. Эту форму не следует изменять при доработках двигателя. Единственный метод точного определения объема камеры сгорания — это заполнение ее моторным маслом через отверстие для запальной свечи (рис. 9.18) при положении поршня в верхней мертвой точке. При таком методе измерения от объема налитого масла надо отнять объем свечного отверстия. Объем свечного отверстия для свечи с короткой резьбой равен 1 —1,1 см’1, для свечи с длинной резьбой — 1,7—1,8 см3. Прокладки под головку цилиндра в гоночных двигателях либо вообще не применяются, либо их заменяют тонкие медные кольца. В обоих случаях поверхности стыка цилиндра и головки должны быть притерты. Применение прокладок из материала с низким коэффициентом теплопроводности противопоказано, потому что это затруднит отток теплоты от верхней части гильзы цилиндра, несущей значительную тепловую нагрузку, к головке и ее охлаждающим ребрам. Прокладка головки цилиндра ни в коем случае не должна выступать в камеру сгорания. Выступающая кромка прокладки будет накаляться и станет источником калильного зажигания. Рис. 9.18. Определение объема камеры сгорания
Октановое число применяемого бензина должно соответствовать степени сжатия. Однако надо учитывать, что степень сжатия является не единственным фактором, определяющим возможную детонацию топлива. Детонация зависит от протекания процесса сгорания, от движения смеси в камере сгорания, от способа зажигания и т. п. Вид топлива для конкретного двигателя подбирается опытным путем. Однако использовать высокооктанное топливо для двигателя с низкой степенью сжатия не имеет смысла, потому что работа двигателя не улучшается. Продувка цилиндра Подбор соответствующих фаз газораспределения в двухтактном двигателе играет огромное значение для удаления отработавших газов из цилиндра и наполнения его свежей смесью. Кроме того, надо так направить струи смеси, идущие из перепускных окон, чтобы они проходили через все закутки цилиндра и камеры сгорания, выдувая из них остатки отработавших газов и направляя их к выпускному окну. Для увеличения ЧВ двигателя и, как следствие, его мощности, необходимо значительно расширить фазу выпуска, а точнее, увеличить разность между фазами выпуска и продувки. В результате этого увеличивается время, в течение которого отработавшие газы, расширяясь, выходят из цилиндра. В этом случае в момент открытия перепускных окон цилиндр уже пуст, поступающий в него свежий заряд лишь незначительно смешивается с остатками отработавших газов. Фаза выпуска увеличивается за счет смещения (спиливания) верхней кромки окна. Фаза выпуска в гоночных двигателях достигает 190° по сравнению со 130—140° в серийных двигателях. Это значит, что верхнюю кромку можно спилить на несколько миллиметров. Надо, однако, учитывать, что в результате увеличения высоты выпускного окна уменьшается ход поршня, на котором выполняется работа. Поэтому увеличение высоты выпускного окна окупается только в том случае, если потери в работе поршня компенсируются улучшением продувки цилиндра. В связи с целесообразностью достижения максимальной разности между фазами выпуска и продувки угол открытия продувочных окон обычно остается неизменным. Существенное влияние на качество продувки имеют размер и форма перепускных каналов и окон. Направление впуска смеси в цилиндр из перепускного канала должно соответствовать принятой системе продувки (см. п. 9.2.4, рис. 9.10). В двух-и четырехканальной системах продувки струи поступающей в цилиндр горючей смеси направляются над поршнем к стенке цилиндра, противоположной выпускному окну, причем в четырехканальной системе струи, исходящие из окон, расположенных ближе к выпускному окну, обычно направлены к оси цилиндра. В системах с тремя или пятью перепускными окнами одно окно должно быть расположено напротив выпускного окна, канал этого окна должен направлять струю горючей смеси вверх под минимальным углом к стенке цилиндра (рис. 9.19). Это необходимое условие эффективного действия этой дополнительной струи, получаемое обычно уменьшением ее сечения, а также более позднего открытия этого окна. Изготовление дополнительного (третьего или пятого) канала является правилом, для двигателей с вращающимся золотником или мембранным клапаном. В двигателях, в которых наполнением кривошипной камеры управляет поршень, на месте классического третьего (или пятого) перепускного канала находится впускное окно. В таких двигателях могут быть дополнительные перепускные каналы, причем впускное окно должно иметь соответствующую форму; подобное решение показано на рис. 9.20. В этом двигателе сделаны три дополнительных перепускных окна небольшого размера, соединенных общим перепускным каналом, вход в который находится над впускным окном. Необходимая фаза впуска обеспечивается здесь соответствующей формой впускного окна. Рис. 9.19. Влияние формы третьего перепускного канала на движение заряда в цилиндре: a — неправильная форма; б— правильная форма
При установке на обычный двигатель вращающегося золотника в цилиндре появляется возможность сделать перепускной канал напротив выпускного окна. Здесь удобно сделать сильно изогнутый короткий канал (рис. 9.21, а), поступление смеси в который на некоторое время закрывается юбкой поршня. Недостаток этого решения заключается в том, что движение поршня нарушает нормальный ток горючей смеси, но оно имеет два важных достоинства: маленький объем канала лишь незначительно увеличивает объем кривошипной камеры, а горючая смесь, проходя через поршень, прекрасно его охлаждает. Практически такой канал легко сделать следующим образом. В цилиндре делаются два отверстия (перепускное окно и вход в канал), в этом месте вырезаются ребра и прикручивается накладка с проточенным в ней каналом (рис. 9.21,6). Можно также попробовать вырезать вертикальную канавку в зеркале цилиндра между входом в канал и окном, ширина канавки равна ширине канала. Однако в этом случае движение поршня вниз будет вызывать некоторую турбулизацию горючей смеси в канале (рис. 9.21, в). Перепускные каналы должны сужаться к окнам в цилиндре. Рис. 9.21. Дополнительный перепускной канал с протеканием смеси через поршень: а — принцип действия; б — часть канала проходит во внешней накладке; в — канал, вырезанный в зеркале цилиндра
Вход в перепускной канал должен иметь площадь на 50 % больше, чем площадь перепускного окна. Очевидно, что изменение сечения канала должно быть выполнено по всей его длине. Углы окон и сечений каналов должны быть скруглены радиусом 5 мм для повышения ламинарности потока. Недопустимы какие-либо погрешности при стыковке частей каналов, находящихся в разных деталях двигателя. Это замечание прежде всего касается места соединения цилиндра с картером двигателя, где источником дополнительных завихрений смеси может стать прокладка, и стыков впускного и выпускного патрубков с цилиндром. Вихри в потоке смеси могут возникать также в месте стыка литой рубашки цилиндра с залитой или запрессованной гильзой (рис. 9.22). Несовпадения размеров в этих местах должны быть безусловно исправлены. В некоторых двигателях окна цилиндра разделены ребром. Это прежде всего касается впускных и выпускных окон. Не рекомендуется уменьшать толщину этих ребер и, уж тем более, удалять их при увеличении площади окна. Такие ребра предохраняют поршневые кольца от попадания в широкие окна и, следовательно, от поломки. Допустимо лишь придать обтекаемую форму ребру впускного окна, но только с внешней стороны цилиндра. Рис. 9.22. Нарушения движения заряда, вызванные неправильным взаимным расположением гильзы цилиндра и литой рубашки цилиндра
Невозможно дать однозначный рецепт для получения определенных эффектов доработок. Вообще можно сказать, что увеличение открытия выпускного окна увеличивает мощность двигателя, увеличивая одновременно ЧВ максимальной мощности и максимального момента, но сужая диапазон рабочих ЧВ. Аналогичное действие оказывает увеличение размеров окон и сечений каналов в цилиндре. Хорошо иллюстрируют эти тенденции изменения в скоростных характеристиках двигателя (рис. 9.23) объемом 100 см (диаметр цилиндра 51 мм, ход поршня 48,5 мм), полученные в результате изменения размеров и фаз газораспределения (рис. 9.24). На рис. 9.24, а приведены размеры окон, при которых двигатель развивает наибольшую мощность (кривые NА и Мд на рис. 9.23). Фаза выпуска составляет 160°, продувки — 122°, впуска — 200°. Впускное окно открывалось при 48° от НМТ, а закрывалось при 68° от ВМТ. Диаметр диффузора карбюратора 24 см. На рис. 9.24, б показаны размеры окон, при которых достигается наибольший рабочий диапазон ЧВ (см. рис. 9.23, кривые NB и Мв). Фаза выпуска составляет 155°, продувки — 118° и впуска — 188°, открытие впуска на угол 48° после НМТ и закрытие на угол 56° после ВМТ. Диаметр диффузора карбюратора равен 22 мм. Следует обратить внимание, что сравнительно небольшие изменения размеров и фаз газораспределения значительно изменили характеристики двигателя. У двигателя А мощность больше, но он практически бесполезен при частоте вращения ниже 6000 об/мин. Вариант В применим в значительно большем диапазоне ЧВ, а это основное достоинство двигателя без коробки передач. Хотя рассмотренный пример касается двигателя не применяемого в Польше класса, он хорошо иллюстрирует зависимость между формой окон и каналов цилиндра и параметрами его работы. Однако надо помнить о том, что привели ли наши доработки к желаемым результатам, мы будем знать только после их выполнения и проверки двигателя на стенде (или субъективно во время обкатки). Подготовка гоночного двигателя является бесконечным циклом доработок и проверок результатов этой работы, новых доработок и проверок, а ведь на характеристики двигателя огромное влияние оказывают и другие агрегаты двигателя (карбюратор, выпускная система и т. п.), оптимальные параметры которых можно определить только опытным путем.
Надо также подчеркнуть огромное значение геометрической симметрии всех окон и каналов в цилиндре. Даже небольшое отклонение от симметричности окажет отрицательное влияние на движение газов в цилиндре. Незначительная разница в высоте перепускных окон с обеих сторон цилиндра (рис. 9.25) вызовет несимметричное движение смеси и нарушит действие всей системы продувки. Отличным показателем, позволяющим непосредственно оценить правильность направления потоков смеси, поступающих из перепускных окон, являются следы на днище поршня. Спустя некоторое время работы двигателя часть днища поршня покрывается слоем сажи. Та же часть днища, которую омывают струи свежей горючей смеси, поступающей в цилиндр, остается блестящей, словно ее вымыли. Рис. 9.25. Влияние различия в высоте перепускных окон с обеих сторон цилиндра на симметрию движения заряда
Поршень и поршневые кольца
Рис. 9.28. Зависимость пропускной способности входного канала карбюратора от форумы его сечения
В современных двигателях применяются поршни, сделанные из материала с маленьким коэффициентом линейного расширения, поэтому зазор между поршнем и гильзой цилиндра может быть небольшим. Если предположить, что зазор по окружности и длине юбки поршня в нагретом двигателе будет везде одинаковым, то после охлаждения поршень деформируется. Поэтому поршень должен получать соответствующую форму еще во время механической обработки, что и делается на практике. К сожалению, форма эта слишком сложная, и ее можно получить только на специальных станках. Из этого следует, что форму поршня нельзя изменять слесарными операциями, а всевозможные обтачивания юбки поршня напильником или точилом, применяемые повсеместно после заклинивания поршня, приведут к тому, что поршень потеряет правильную форму. В случае острой необходимости такой поршень может быть использован, однако можно не сомневаться, что его взаимодействие с зеркалом цилиндра будет значительно хуже. Надо предостеречь от использования наждачной бумаги для аварийной зачистки юбки поршня. Крупинки абразивного материала впиваются в мягкий материал поршня, после чего исполосуют все зеркало цилиндра. Это приведет к необходимости растачивания цилиндра до следующего ремонтного размера. Примерное распределение температур на поршне приведено на рис. 9.29. Наибольшая тепловая нагрузка приходится на днище и верхнюю часть, особенно со стороны выпускного окна. Температура нижней части юбки меньше и зависит, прежде всего, от формы поршня. Форма внутренней поверхности поршня должна быть такой, чтобы в сечении поршня не было сужений, затрудняющих теплообмен (рис. 9.30). Теплота от поршня цилиндру передается через поршневые кольца и места контакта юбки поршня с цилиндром. Для уменьшения массы поршня и, тем самым, уменьшения сил, заметно возрастающих при высокой частоте вращения двигателя, можно удалить часть материала внутри поршня, но только в его нижней части. Обычно нижняя кромка поршня внутри заканчивается буртиком, являющимся технологической базой для обработки поршня. Этот буртик можно удалить, оставив толщину юбки в этом месте около 1 мм. Толщина стенки поршня должна плавно возрастать по направлению к днищу. Можно немного увеличить вырезы в юбке поршня под бобышками. Форма и размеры этих вырезов должны соответствовать вырезам в нижней части гильзы цилиндра (рис. 9.31). Для изменения время-сечения легче всего подрезать нижнюю кромку поршня со стороны впускного окна, хотя большую трудность представляет подбор величины подреза. Для снижения тепловой нагрузки на верхнее поршневое кольцо рекомендуется сделать над ним обводную канавку шириной 0,8—1 мм и глубиной 1—2 мм. Иногда подобная канавка (или даже две) делаются между кольцами. Такие надрезы направляют тепловой поток в нижнюю часть поршня, уменьшая температуру поршневых колец. Вообще мы не имеем возможности изменить вид и расположение колец. Можем только контролировать зазор в замке (разрезе) кольца, который не должен превышать 0,5 % диаметра цилиндра. Надо также тщательно определить угловое положение замков так, чтобы они никогда не попадали на окна при движении поршня (рис. 9.32). Проводя работы над цилиндром, также надо учитывать положение замков поршневых колец. Иногда применяется несложный способ уменьшения упругости поршневого кольца путем снятия фасок с его внутренних кромок. Это обеспечивает лучшее прилегание колец к зеркалу цилиндра. Такой способ особенно целесообразен при смене колец без шлифования цилиндра. Кривошипный механизм Как уже говорилось, в двигателе 501 -Z3A целесообразно переставить щеки коленчатого вала. После разборки с помощью пресса над валом надо выполнить следующие операции. 1. Углубить в щеках вала гнезда для нижней головки шатуна на толщину дополнительных дисков, прикрепляемых к внешней поверхности щек (рис. 9.35, размер е). 2. Выдавить полуоси из щек на толщину дополнительных 3. Уменьшить толщину шатуна (рис. 9.36) на шлифовальном станке. Ручная обработка применяется только для доводки. 4. Укоротить палец кривошипа до размера с (рис. 9.36), равного ширине вала после перестановки щек, но до крепления дополнительных дисков. Палец надо укорачивать с обеих сторон, это позволит оставить дорожки качения роликов подшипника на старом месте. 5. Взвесить верхнюю и нижнюю головки шатуна, как это показано на рис. 9.37. 6. Собрать коленчатый вал. Запрессовка пальца кривошипа может быть выполнена с помощью пресса или больших тисков.
Конечно, после такой сборки трудно добиться соосности полуосей вала. Погрешность можно обнаружить, приложив к одной из щек стальную пластину (рис. 9.38), которая будет отставать от другой щеки. Это можно исправить, ударяя по одной из щек киянкой (рис. 9.39). Точнее биение вала проверим при его вращении в подшипниках. На покрытой мелом полуоси штихель обозначит места, в которых надо уменьшить биение (рис. 9.40). При сборке вала надо помнить о необходимости сохранения зазора между нижней головкой шатуна и щеками вала. Этот зазор должен быть не меньше 0,3 мм. Слишком маленький зазор во многих случаях является причиной заклинивания подшипника шатуна. 7. Уравновесить коленчатый вал. Это делается статическим методом. Обопрем вал на призмы и, повесив грузик в верхнюю головку шатуна, будем так подбирать уравновешенную массу (не путать с массой грузика), чтобы вал оставался в состоянии покоя при любом положении. Масса грузика представляет собой часть масс, участвующих в возвратно-поступательном движении, которую надо уравновесить. Предположим, что масса верхней головки шатуна составляет 170 г, а масса поршня с кольцами и поршневым пальцем — 425 г. Масса, совершающая возвратно-поступательное движение, составляет 595 г. Предполагая, что коэффициент уравновешенности равен 0,66, получим, что масса, которую необходимо уравновесить, равна 595X0,66 = 392,7 г. Отнимая от этой величины массу верхней головки шатуна, получим массу грузика G, подвешенного на головке. Состояние статического равновесия коленчатого вала достигается путем высверливания отверстий в щеках вала с той стороны, которая перетягивает. 8. Сделать дополнительные диски из стали и прикрепить их к валу тремя винтами Мб с потайными коническими головками. Перед креплением дисков целесообразно плоскость стыка с валом смазать герметиком. Винты законтрить кернением. Добавим, что дополнительные диски можно крепить не к валу, а неподвижно к внутренним стенкам картера. Однако из-за неплотного прилегания диска к стенке может ухудшиться теплообмен. Надо отметить, что смещение щек коленчатого вала не исключает применения тонкой «подковы». Практические рекомендации Перед началом доработок цилиндра надо сделать инструмент для измерения фаз газораспределения, используя для этой цели круглый угломер со шкалой 360° (рис. 9.42). Угломер установим на коленчатый вал двигателя, а на двигатель прикрепим проволочную стрелку. Для однозначного определения времени открытия и закрытия окон можно использовать тоненькую проволоку, вставленную через окно в цилиндр и прижимаемую поршнем в верхней кромке окна. Толщина проволоки на точности измерений практически не скажется, но такой способ облегчит работу. Особенно он полезен при определении угла открытия впускного окна. Значительно облегчить работу по изменению фаз газораспределения и размеров каналов и окон поможет снятие оттисков с зеркала цилиндра. Такой оттиск можно получить следующим образом: внутрь цилиндра вкладываем кусок картона и подгоняем его так, чтобы он точно лежал вдоль зеркала цилиндра; его верхний край должен совпадать с верхней плоскостью цилиндра; тупым концом карандаша выдавливаем контуры всех окон; на вынутом из цилиндра картоне получаем отпечаток зеркала цилиндра; вдоль линий оттисков вырезаем в картоне отображенные окна. На полученной развертке зеркала цилиндра можно измерить расстояние от краев окон до верхней плоскости цилиндра и рассчитать соответствующие им фазы газораспределения (используя формулы, имеющиеся в каждой книге о двигателях). Теперь рассмотрим, как зафиксировать новые фазы газораспределения в дорабатываемом двигателе. Для этого на угломере поочередно устанавливаем необходимые углы, измеряя каждый раз расстояние от верхней кромки поршня до верхней плоскости цилиндра. Измеренные расстояния наносим на предварительно сделанную выкройку. Теперь мы можем наметить новую форму окон, а потом вырезать их на выкройке. Остается вложить выкройку в цилиндр и увеличить окна так, чтобы их форма совпадала со спроектированными. Использование выкройки избавит нас от необходимости многократной проверки углов при увеличении окон. Рис. 9.42. Несложный угломер для измерения фаз газораспределения
После получения нужной формы окон цилиндра сделаем изменения в каналах, соответствующие принятой концепции. Картонная выкройка может пригодиться при подгонке стыка перепускных каналов, находящихся в цилиндре и корпусе двигателя. Применение выкройки тем более желательно,
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 703; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.206.212 (0.016 с.) |