Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные параметры двигателяСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Основные геометрические параметры двигателя: диаметр цилиндра и ход поршня. Эти параметры определяют рабочий объем цилиндра, вычисляемый как произведение площади его сечения на ход поршня. Геометрические размеры двигателя определяют также степень сжатия двигателя. Однако надо разделить понятия геометрической и эффективной степеней сжатия. Геометрическая степень сжатия ед — это отношение объема над поршнем при его положении в нижней мертвой точке (НМТ) к обкому камеры сгорания. А эффективная степень сжатия ee определяется отношением объема над поршнем в момент открытия выпускного окна к объему камеры сгорания. Казалось бы, что логичнее пользоваться эффективной степенью сжатия, но определенные таким образом степени сжатия могут быть сравнимы для двигателей, у которых одинаковая фаза открытия выпускного окна. В литературе обычно приводится геометрическая степень сжатия. Для сравнения можно сказать, что в картинговых двигателях объемом 125 см1 геометрическая степень сжатия порядка 15, а соответствующая эффективная степень сжатия только 10—11. Анализируя параметры двигателей, всегда надо знать, о какой степени сжатия идет речь. Если это эффективная степень сжатия, то необходимо учитывать, при каком угле открытия выпускного окна она получена. Практически же величина степени сжатия двухтактного двигателя является лишь ориентировочным параметром. Основные параметры, характеризующие двигатель — мощность N, кВт, и крутящий момент Мo. Эти величины связаны между собой соотношением:
где n — частота вращения коленчатого вала двигателя, об/мин; Мo — крутящий момент, Н-м. Чаще всего приводятся данные, касающиеся максимальной мощности и крутящего момента с указанием частоты вращения, при которой они были получены (например, 20 кВт при 10 400 об/мин). Однако знание максимальной мощности двигателя и максимального крутящего момента немного говорит о динамических качествах карта, хотя и указывает на «форсированность» двигателя. Рис. 9.1. Внешние скоростные характеристики двигателя
На динамические качества карта влияет форма внешней характеристики, т. е. форма кривой мощности и максимального момента как функции частоты вращения (рис. 9.1). Из рис. 9.1 видно, что кривые мощности и крутящего момента двигателя достигают максимума при разной частоте вращения: ЧВ при максимальной мощности значительно превышает ЧВ при максимальном моменте. В этом случае двигатель имеет широкий рабочий диапазон ЧВ. Величина этого диапазона имеет большое практическое значение. Если двигатель работает при максимальной мощности и при этом возрастает сопротивление движению, ЧВ начнет уменьшаться и одновременно будет увеличиваться крутящий момент. Тем самым будет увеличиваться сила тяги, что позволит преодолеть возросшее сопротивление движению. Сила тяги уменьшится только тогда, когда ЧВ двигателя будет ниже ЧВ максимального момента. Это заставит водителя перейти на более низкую передачу. Из этого следует, что чем больше рабочий диапазон ЧВ или чем меньше отношение ЧВ при максимальном моменте к ЧВ при максимальной мощности, тем реже надо будет переключать передачу. В результате этого можно будет использовать меньшее число передач. Спортивные двигатели имеют несколько иные характеристики мощности и крутящего момента. ЧВ при максимальной мощности не намного больше ЧВ при максимальном моменте, поэтому диапазон ЧВ, в котором нет уменьшения силы тяги при увеличении сопротивления движению, невелик. Такой двигатель, чтобы полностью использовать его возможности, должен постоянно работать в узком диапазоне ЧВ, а этого можно добиться лишь путем использования многоступенчатой коробки передач. В гоночных мотоциклах иногда даже встречаются десятиступенчатые коробки передач. Большое влияние на характеристики двигателя оказывает форма кривой крутящего момента. «Крутая» кривая момента выгоднее «пологой». Посмотрим еще раз на характеристику двигателя (см. рис. 9.1). При увеличении сопротивления движению машины ЧВ двигателя уменьшается и возрастет крутящий момент. Чем «круче» кривая момента, тем больше будет этот рост. Отсюда следует, что в двигателе с «крутой» характеристикой при увеличении сопротивления движению будет меньше падение ЧВ, чем в двигателе с «пологой» характеристикой. Форма характеристики двигателя связана с числом передач. В многоступенчатом двигателе (например, шестиступенчатом) мы можем допустить довольно «пологую» характеристику момента и небольшой рабочий диапазон ЧВ. Если мы форсируем двигатель с небольшим числом передач (например, трехступенчатый), надо стремиться к получению «эластичного» двигателя с «крутой» кривой момента и значительным рабочим диапазоном ЧВ. И, наконец, рассмотрим, какой из двигателей, характеристики которых показаны на рис. 9.2, лучше использовать с трехступенчатой коробкой передач. Двигатель А имеет наименьший крутящий момент во всем диапазоне ЧВ, характеристика у него довольно «пологая». Единственное достоинство этого двигателя — относительно большой рабочий диапазон ЧВ а, однако получаемый выигрыш не сможет компенсировать слишком маленький момент. Двигатель С — «эластичный», кривая момента — «крутая», но у него мал рабочий диапазон ЧВ с, что, несмотря на значительные максимальные значения мощности и крутящего момента, стало бы серьезным препятствием в достижении хороших динамических качеств карта. Предположим, что карт с двигателем С проходит поворот на определенной передаче. Радиус поворота уменьшается, возрастающее сопротивление движению приводи! к падению ЧВ. ЧВ быстро упадет ниже ЧВ максимального момента (маленький с). У двигателя будет слишком маленький момент, чтобы преодолеть увеличившееся сопротивление движению, и слишком высокая ЧВ, чтобы переключить передачу на одну ступень вниз. Приходится ждать дальнейшего снижения скорости. В двигателе В в аналогичной ситуации момент будет возрастать до тех пор, пока ЧВ не упадет до уровня, позволяющего переключить передачу. Это происходит благодаря значительному рабочему диапазону ЧВ в, но при меньшей «эластичности», чем у двигателя С, и при меньшем максимальном моменте. Из приведенного примера видно, что иногда лучше отказаться (в некоторой степени) от значительного форсирования двигателя в пользу увеличения рабочего диапазона ЧВ. Фазы газораспределения Фазы газораспределения выражаются углами поворота коленчатого вала, при которых открываются и закрываются соответствующие окна цилиндра. В двухтактном двигателе рассмотрим три фазы: открытия впускного окна, открытия выпускного окна и открытия перепускных окон (рис. 9.3). Фазой открытия окна, например, выпускного, назовем угол поворота коленчатого вала, измеряемый с момента, когда верхний край поршня откроет выпускное окно, до момента, когда поршень, двигаясь обратно, закроет окно. Аналогично можно определить фазы открытия остальных окон. Рис. 9.3. Диаграммы фаз газораспределения: a -симметричная; б- несимметричная; OD и ZD — открытие и закрытие впуска. ОР и ZP- открытие и закрытие перепуска; OW и ZW -открытие и закрытие выпуска; a,у- углы открытия соответственно впускного и выпускного окон; B — угол открытия перепускных окон
Рис. 9.4. Сравнение время-сечений (площадь под кривыми) для окон разной формы
В обычном поршневом двигателе все окна открываются и закрываются поршнем, поэтому диаграмма фаз газораспределения симметрична (или почти симметрична) относительно вертикальной оси (рис. 9.3, а). В картинговых двигателях, в которых наполнение кривошипной камеры горючей смесью осуществляется с помощью вращающегося золотника, фаза впуска может не зависеть от движения поршня, поэтому диаграмма фаз газораспределения имеет обычно несимметричный вид (рис. 9.3, б). Фазы газораспределения являются сравнимыми величинами для двигателей с разным ходом поршня, т. е. они служат универсальными характеристиками. При сравнении двигателей, имеющих одинаковый ход поршня, фазы газораспределения можно заменить расстояниями от окон, например, до верхней плоскости цилиндра. Кроме фаз газораспределения важным параметром является так называемое время-сечение. При постепенно открываемом поршнем окне от формы канала зависит, как увеличивается открытая поверхность окна в зависимости от угла поворота коленчатого вала (или времени). Чем шире окно, тем большая поверхность будет открываться при смещении поршня вниз. За одно и то же время через окно будет проходить большее количество горючей смеси. Целесообразно, чтобы при открытии окна поршнем его площадь была бы сразу как можно большей. Во многих двигателях для этого окно делается расширенным кверху. Благодаря этому достигается эффект быстрого открытия окна без увеличения его поверхности. Диаграмма роста открытой поверхности окон разной формы в зависимости от времени при постоянной ЧВ двигателя показана на рис. 9.4. Общая площадь окон в обоих случаях одинаковая. Площадь под кривыми диаграммы характеризует значение время-сечения. Для окна неправильной формы время-сечение больше.
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 1213; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.1.63 (0.009 с.) |