![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если: · работа выполнена полностью; · в логических рассуждениях и обосновании решения нет пробелов и ошибок; · в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала). Отметка «4» ставится в следующих случаях: · работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки); · допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки). Отметка «3» ставится, если: · допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме. Отметка «2» ставится, если: · допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере. Отметка «1» ставится, если: · работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик: · полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; · изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; · правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; · показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; · продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
· отвечал самостоятельно, без наводящих вопросов учителя; · возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: · в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; · допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; · допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях: · неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке о бучающихся» в настоящей программе по математике); · имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; · ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; · при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях: · не раскрыто основное содержание учебного материала; · обнаружено незнание учеником большей или наиболее важной части учебного материала; · допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если: · ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.
Общая классификация ошибок. При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
Грубыми считаются ошибки: · незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения; · незнание наименований единиц измерения; · неумение выделить в ответе главное; · неумение применять знания, алгоритмы для решения задач; · неумение делать выводы и обобщения; · неумение читать и строить графики; · неумение пользоваться первоисточниками, учебником и справочниками; · потеря корня или сохранение постороннего корня; · отбрасывание без объяснений одного из них; · равнозначные им ошибки; · вычислительные ошибки, если они не являются опиской; · логические ошибки.
К негрубым ошибкам следует отнести: · неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными; · неточность графика; · нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными); · нерациональные методы работы со справочной и другой литературой; · неумение решать задачи, выполнять задания в общем виде.
Недочетами являются: · нерациональные приемы вычислений и преобразований; · небрежное выполнение записей, чертежей, схем, графиков.
Рабочая программа курса математика (алгебра) 7 класс
Пояснительная записка
Данная рабочая программа ориентирована на учащихся 7 классов и реализуется на основе следующих документов:
Сборник “Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.”/ Сост. Г.М.Кузнецова, Н.Г. Миндюк. – М. Дрофа; 4-е изд. – 2004г.
· Планирование учебного материала. Послесловие для учителя. Учебник для 7кл. С.М.Никольский, М.К. Потапов, А.В. Шевкин, М.: Просвещение, 2003.
с учетом требований к оснащению образовательного процесса, в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,
Цели Изучение алгебры в 7 классе направлено на достижение следующих целей: · продолжить овладевать системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования; · продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей; · продолжить формировать представление об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
· продолжить воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
В ходе преподавания алгебры в 7 классе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
Поставленные цели решаются на основе применения различных форм работы (индивидуальной, групповой, фронтальной), ориентированных на рациональное сочетание устных и письменных видов работ, на развитие речи учащихся, на формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов. Применение электронного тестирования, тренажёра способствует закреплению учебных навыков, помогает осуществлять контроль и самоконтроль учебных достижений. Рабочая программа ориентирована на преподавание по учебнику «Алгебра 7» под редакцией С.М. Никольского серии «МГУ-школе», Москва «Просвещение», 2005. Она рассчитана на весь учебный год, предназначена для профильной подготовки учащихся 7-х классов общеобразовательной школы. В связи с этим в содержание программы добавлены темы по теории вероятности и статистики, решение линейных уравнений и систем с модулем и параметром. Поэтому было произведено изменение количество часов:
Согласно учебному плану на изучение математики в 7 классе отводится 170 часов из расчета 5 ч в неделю. Всего контрольных работ по алгебре 10 ч. Контрольные работы направлены на проверку уровня базовой подготовки учащихся, а также на дифференцированную проверку владения формально-оперативным математическим аппаратом, способность к интеграции знаний по основным темам курса. Промежуточный контроль знаний осуществляется с помощью проверочных самостоятельных работ, тестирования. Тематическое и примерное поурочное планирование составлено в соответствии с учебником «Алгебра 7», С.М.Никольского, М.К.Потапова и др., М.: Просвещение, 2006.
Содержание и тематическое планирование курса Повторение (3часа). Действительные числа (35 часов). Натуральные числа и действия с ними. Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком целых чисел. Обыкновенные дроби и десятичные дроби. Бесконечные периодические и непериодические десятичные дроби. Действительные числа как бесконечные десятичные дроби (периодические и непериодические). Понятие об иррациональном числе. Десятичные приближения иррациональных чисел. Сравнение действительных чисел, арифметические действия над ними. Длина отрезка. Координатная ось. Элементы статистики. Этапы развития числа. Основная цель – систематизировать и обобщить уже известные сведения о рациональных числах, двух формах их записи – в виде обыкновенной и десятичной дроби, сформировать представление о действительном числе, как о длине отрезка и умение изображать числа на координатной оси. Знать определение действительного числа, признаки делимости, Уметь выполнять перевод периодической дроби в десятичную и наоборот, сравнивать действительные числа, выполнять действия над ними. Уметь анализировать статистические данные в таблицах и диаграммах (столбчатых, круговых, рассеивания). Одночлены и многочлены (30 часов). Числовые и буквенные выражения. Числовое значение буквенного выражения. Одночлен, произведение одночленов, подобные одночлены. Многочлен, сумма и разность многочленов, произведение одночлена на многочлен, произведение многочленов. Степень многочлена. Целое выражение и его числовое значение. Тождественное равенство целых выражений. Основная цель – сформировать умения выполнять преобразования с одночленами и многочленами. Знать определение одночлена, многочлена Уметь выполнять различные операции с одночленами и многочленами. Формулы сокращенного умножения (24 часа). Квадрат суммы и разности. Выделение полного квадрата в квадратном трехчлене. Формула разности квадратов. Куб суммы и куб разности, Формула суммы кубов и разности кубов. Применение формул сокращенного умножения. Разложение многочлена на множители.
Основная цель – сформировать умения, связанные с применением формул сокращенного умножения для преобразования квадрата суммы и разности в многочлен, для разложения многочлена на множители. Знать формулы сокращенного умножения Уметь применять формулы сокращенного умножения и использовать их при решении комбинированных задач Алгебраические дроби (21час). Алгебраические дроби и их свойства, сокращение дробей. Арифметические действия над алгебраическими дробями. Рациональные выражения, их преобразования и числовое значение. Допустимые значения переменных, входящих в алгебраические выражения. Тождественное равенство рациональных выражений. Основная цель – сформировать умения применять основное свойство дроби и выполнять над алгебраическими дробями арифметические действия. Знать определение и свойства алгебраической дроби. Уметь находить область допустимых значений алгебраических выражений, выполнять арифметические действия с алгебраическими дробями. Степень с целым показателем (13часов). Степень с целым показателем и её свойства. Стандартный вид числа. Преобразование рациональных выражений, записанных с помощью степени с целым показателем. Делимость многочленов. Основная цель – сформировать умение выполнять арифметические действия с числами, записанными в стандартном виде, и преобразовывать рациональные выражения, записанные с помощью степени с целым показателем. Знать понятие степени с целым показателем и свойства, алгоритм Евклида. Уметь выполнять различные преобразования рациональных выражений, содержащих степени с целым показателем; использовать алгоритм Евклида при нахождении НОК и НОД натуральных чисел.
|
|||||||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 447; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.249.188 (0.01 с.) |