Полная механическая энергия частицы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Полная механическая энергия частицы.



Известно, что приращение кинетической энергии частицы при перемещении в силовом поле равно элементарной работе всех сил, действующих на частицу: . Если частица находится в стационарном поле консервативных сил, то на нее кроме консервативной силы могут действовать и другие силы, называемые сторонними ; Тогда результирующая сила равна: .

Работа всех этих сил идет на изменение кинетической энергии частицы:

Известно также, что работу консервативных сил поля можно записать как убыль потенциальной энергии частицы в этом поле.

, значит или

Т.о. работа сторонних сил идёт на приращение величины . Эту величину называют полной механической энергией частицы в поле: .

Отсюда видно, что определяется с точностью до постоянной, так как с точностью до постоянной определяется . Теперь можно записать

(***)

т.е., приращение полной механической энергии частицы на некотором пути равно работе сторонних сил, действующих на частицу на этом пути; Если , то полная механическая энергия частицы растёт. При — уменьшается.

Пример: Для тела, падающего с обрыва, работа сторонних сил:

, где - силы сопротивления.

Закон сохранения механической энергии частицы.

Из выражения следует, что в стационарном поле консервативных сил полная механическая энергия частицы может изменяться только под действием сторонних сил, отсюда вытекает закон сохранения механической энергии частицы:

Если сторонние силы отсутствуют, то полная механическая энергия частицы в стационарном поле консервативных сил остается постоянной.

;

Закон сохранения позволяет решать многие задачи, не привлекая уравнения движения, которые часто приводят к громоздким расчетам.

 

Кинематика и динамика вращательного движения.

Кинематика.

Поворот тела на некоторый угол можно задать в виде отрезка, длина которого , а направление совпадает с осью вращения и определяется правилом правого винта: Направление должно быть таким, чтобы глядя вдоль него, мы видели поворот совершающийся по часовой стрелке, рис.

При поворотах на очень малые углы, путь проходимый точкой можно считать прямолинейным, поэтому два последовательных малых поворота и (вокруг разных осей; в данном случае оси перпендикулярны) обуславливают, как видно из рис., такое же перемещение, любой точки тела, как и поворот получаемый из и сложением по правилу параллелограмма. Значит, очень малые повороты можно рассматривать как векторы. Направление вектора поворота связывается с направлением вращения тела, следовательно не является истинным вектором, а является псевдовектором.

Для истинных векторов типа вопрос об их направлении не возникает, он решается естественным образом, из природы самих физических величин. Векторы типа , направление которых определяется направлением вращения, называются псевдовекторами или аксиальными векторами.

Векторная величина называется угловой скоростью тела, она направлена вдоль оси вращения, в сторону, определяемую правилом правого винта, также псевдовектор, модуль угловой скорости равен . Если , то наблюдается равномерное вращение , для равномерного движения есть угол поворота в единицу времени. Для такого движения можно ввести период вращения и частоту: число оборотов за 1 с. , а .

Понятия и можно сохранить и для неравномерного вращения, понимая под ними их мгновенные значения.

Вектор может изменяться как за счет изменения скорости вращения вокруг оси (по величине), так и за счет поворота оси вращения в пространстве (по направлению). Если за угловая скорость получает приращение , то изменение угловой скорости со временем характеризуется угловым ускорением:

— тоже псевдовектор.

Если ось вращения не изменяет своего положения в пространстве, то векторы , и коллинеарны.

Точки вращающегося тела имеют разные линейные скорости, которые определяются угловой скоростью и радиусами точек . Если за время тело повернулось на угол , то дуга окружности при этом . Линейная скорость точки: ; т.е., связь между модулями скоростей .

Найдем связь между векторами и . Положение точки определяется радиусом-вектором . Из рис. видно, что векторное произведение совпадает с по направлению, модуль равен .

Таким образом:

Модуль нормального ускорения точек или . Вводя вектор , перпендикулярный оси вращения, можно записать:

Когда ось вращения не поворачивается в пространстве, тангенциальное ускорение можно представить:

; -модуль углового ускорения, т.е., .

Таким образом, нормальное и тангенциальное ускорения растут пропорционально радиусу точек.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-09-13; просмотров: 895; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.163.31 (0.009 с.)