Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Параллельная работа трансформаторов. Условия включения на параллельную работу трехфазных трансформаторов. Распределение нагрузки между трансформаторами при параллельной работе.

Поиск

Параллельная работа трансформаторов. Условия включения на параллельную работу трехфазных трансформаторов. Распределение нагрузки между трансформаторами при параллельной работе.

Параллельной работой двух или нескольких трансформаторов называется работа при параллельном соединении их обмоток как на первичной, так и на вторичной сторонах. При параллель­ном соединении одноименные зажимы трансформаторов присо­единяют к одному и тому же проводу сети. Применение нескольких параллельно включенных трансформаторов вместо одного трансформатора суммарной мощности необходимо для обеспечения бесперебойного энергоснабжения в случае аварии в каком-либо трансформаторе или отключения его для ремонта. Это также целесообразно при работе трансформаторной подстанции с переменным графиком нагрузки. В этом случае при уменьшении мощности нагрузки можно отключить один или несколько трансформаторов для того, чтобы нагрузка трансформаторов, оставшихся вклю­ченными, была близка к номинальной.

1.При одинаковом первичном напряжении вторичные напря­жения должны быть равны. Другими словами, трансформаторы должны иметь одинаковые коэффициенты трансформации: К1= К2= К3=.... При несоблюдении этого условия, между параллельно включенными тр а нсформаторами возникает уравнительный ток, обусловленный разностью вторич­ных напряжений трансформаторов. Iур=DU/(ZK1+ZK2),где ZK1и ZK2 - внутренние сопротивления трансформаторов. При нагрузке трансформаторов уравнительный ток наклады­вается на нагрузочный. При этом трансформатор с более высоким вторичным напряжением х.х. (с меньшим коэффициентом трансформации) оказывается перегруженным, а трансформатор равной мощ­ности, но с большим коэффициентом трансформации - недогруженным.

2.Тр-ры должны принадлежать к одной группе соединения. При несоблюдении этого условия вторичные линей­ные напряжения трансформаторов окажутся сдвинутыми по фазе относительно друг друга и в цепи трансформаторов появится разностное напряжение DU, под действием которого возникнет значительный уравнительный ток.

3.Тр-ры должны иметь одинаковые напряже­ния к.з.: Uki=Uk2=Uk3=..... Соблюдение этого условия необ­ходимо для того, чтобы общая нагрузка распределялась между трансформаторами пропорционально их номинальным мощно­стям. (S1/S1н)/(S2/S2н)=Uk2/Uk1 Из соотношения следует, что относительные мощности параллельно работающих трансформаторов обратно пропорциональны их напряжениям к.з. Т.е. при неравенстве напряжений к.з. параллельно работающих трансформаторов больше нагружается трансформатор с меньшим на­пряжением к.з. В итоге это ведет к перегрузке одного трансформатора (с меньшим Uk) и недогрузке другого (с большим Uk).

4. Помимо соблюдения указан­ных трех условий необходимо перед включением трансформаторов на параллельную работу проверить порядок чередования фаз, который должен быть одинаковым у всех трансформаторов.


Изменение вторичного напряжения трансформатора при работе под нагрузкой. Влияние характера нагрузки на величину вторичного напряжения.

Внешняя характеристика трансформатора

Регулирование напряжения трансформатора под нагрузкой.

Векторная диаграмма трехобмоточного тм.

Схема замещения трехобмоточного трансформатора будет иметь две вторичные цепи. Из представленного рисунка видно, что изменение нагрузки одной вторичной обмотки влияет на напряжение другой вторичной обмотки, т.к. при этом изменяется падение напряжения первичной обмотки Z1I1. Векторные диаграммы трехобмоточного трансформатора можно составить на основе схемы замещения представленной ниже.

Параметры схемы замещения можно определить расчетным путем или из данных трех опытов кз трехобмоточного трансформатора. По опытным значениям сопротивлений кз

По аналогичным формулам через активные и индуктивные составляющие Zk12, Zk13, Zk23 выражают также r1, r2, r3 и x1, x2, x3. В опытах кз определяют также напряжения кз Uk12, Uk13, Uk23.

Автотрансформаторы. Схемы автотрансформаторов. Уравнения. Соотношения между мощностями трансформатора обычного и автотрансформатора. Конструктивные особенности ат, преимущества и недостатки в сравнении с обычным тм. Области применения.

Автотрансформаторы.

Это трансформаторы, у которых помимо магнитной связи между обмотками имеется и электрическая связь. Обмотка с числом витков ωax одновременно является частью первичной и вторичной обмотки. При условии, что коэффициент трансформации автотрансформатора меньше 2-х (это наиболее целесообразно), то витки ωax можно выполнить проводом меньшего сечения. При этом снижается расход материала и снижаются габариты. Поэтому КПД, при прочих равных условиях, выше у автотрансформатора. К недостаткам автотрансформатора следует отнести необходимость наличия высокопрочной изоляции. По технике безопасности нельзя использовать автотрансформаторы, для подачи понимающего напряжения непосредственно потребителю.

Проходная мощность трансформатора представляет собой всю передаваемую мощность Sпр=U2I2 из первичной цепи во вторичную. Различают расчетную мощность Sрасч, представляющую собой мощность, передаваемую из первичной цепи во вторичную магнитным полем. Расчетной данная мощность называется потому, что она определяет размеры и габариты всего автотрансформатора.

Соотношение токов в различных частях автотрансформатора: I12=I2-I1.

Формула проходной мощности: Sпр=U2I2=U2(I1+I12)=Sэ+Sрасч.

АТ по сравнению с простым трансформатором равной мощности, обладает следующими преимуществами: меньший расход активных материалов, более высокий КПД, меньшие размеры, меньшая стоимость. Данные преимущества тем сильнее, чем больше .

АТ применяют в электроприводе переменного тока для уменьшения пускового тока двигателей переменного тока значительной мощности, для регулировки режимов работы электрометаллургических печей. АТ малой мощности применяются в устройствах радио, связи и автоматики.


 

Пик – трансформатор

  ПТ применяются для преобразования синусоидального напряжения в импульсы пикообразной формы. Такие импульсы напряжения необходимы для управления тиристорами либо другими полупроводниковыми или электронными устройствами. Принцип работы ПТ основан на явлении магнитного насыщения ферромагнитного материала. Первичная обмотка ПТ расположена на увеличенном в диаметре стержне, в то время как вторичная обмотка располагается на уменьшенном в диаметре стержне. Имеет место шунтирующий стержень. Принцип действия основан на явлении перенасыщения магнитопровода в местах с узким стержнем. В результате чего Е2 практически = 0 для данного периода, но малейшее изменение значения Ф2 влечет скачкообразное изменение Е2.

Автотрансформаторы.

Это трансформаторы, у которых помимо магнитной связи между обмотками имеется и электрическая связь. Обмотка с числом витков ωax одновременно является частью первичной и вторичной обмотки. При условии, что коэффициент трансформации автотрансформатора меньше 2-х, то витки ωax можно выполнить проводом меньшего сечения. При этом снижается расход материала и снижаются габариты. Поэтому КПД, при прочих равных условиях, выше у автотрансформатора. К недостаткам автотрансформатора следует отнести необходимость наличия высокопрочной изоляции. По технике безопасности нельзя использовать автотрансформаторы, для подачи понимающего напряжения непосредственно потребителю.

Сварочный трансформатор:

Выполняется так, что U2 должно быть 50-60 В, необходимое для зажигания дуги и ее устойчивого горения. Зажиганию дуги предшествует короткое замыкание во вторичной обмотке трансформатора, рабочий ток сварочного трансформатора соответствует напряжению электрической дуги 30 В. Обрывает дугу перевод трансформатора в режим ХХ. В целях ограничения тока обмотки располагают на разных сторонах магнитопровода, а также включают дроссель во вторичную цепь. Коэффициент мощности сварочных трансформаторов из-за значительного индуктивного сопротивления не превышает 0,4-0,5.

ТМ для преобразования частоты.

Трансформаторные устройства, состоящие из магнитопроводов и обмоток, можно использовать для умножения частоты переменного тока, т.е. увеличения частоты в целое число раз. Практическое применение получили удвоители и утроители частоты. Два замкнутых магнитопровода имеют пять обмоток. Первичную обмотку выполняют так, чтобы она охватывала сразу два магнитопровода.

 

 


 

Синхронный генератор.

Важным отличием синхронной машины от асинхронной является то, что главный магнитный поток в ней создается НС постоянного тока возбуждения Iв, который машина получает от источника , т. е. в машине имеет место раздельное питание обмоток статора и ротора.

Статор машины выполнен аналогично статору асинхронной машины. На нем расположена -фазная (обычно трехфазная) обмотка. Обмотка ротора 4 состоит из одной или нескольких катушек, образующих многополосную систему с тем же числом пар полюсов р, что и обмотка статора 3. Обмотка ротора соединяется с внешним источником питания посредством контактных колец 5 и щеток 6.

Принцип действия синхронного генератора: Обмотка статора (якоря) трехфазного СГ состоит из 3-х однофазных обмоток, смещенных в пространстве под углом 120 эл градусов и соединены звездой или треугольником. На роторе (индукторе) расположена обмотка возбуждения, при подключении которой к источнику постоянного тока возникаем магнитное поле возбуждения. Посредством приводного двигателя ротор вращается с чистотой n1. При этом магнитное поле ротора также вращается и индуктирует трехфазную симметричную систему ЭДС. Эти ЭДС создают 3-х фазный тока статора, который передается во внешнюю сеть (на потребителя).

Постоянство скорости вращения ротора синхронной машины обусловливает область ее применения: в качестве генераторов промышленной частоты на подстанциях или в дизель – генераторах,

Таким образом, синхронная машина имеет следующие особенности:

- ротор машины, как в двигательном, так и в генераторном режимах, вращается с постоянной скоростью, равной скорости вращения магнитного поля;

- частота изменения ЭДС Е1, индуктируемой в обмотке статора, пропорциональна скорости вращения ротора;

- в обмотке ротора ЭДС не индуктируется, а магнитное поле создается постоянным током, подводимым от внешнего источника, или постоянными магнитами.

Схемы возбуждения СГ:

Независимое возбуждение СГ При независимом возбуждении для питания обмотки возбуждения используется генератор постоянного тока (возбудитель). Реостаты r1 и r2 предназначены для регулирования величины тока возбуждения СГ. Мощность возбудителя обычно составляет от 2 до 5 % мощности СГ.
Самовозбуждение СГ При самовозбуждении питание обмотки возбуждения осуществляется от СГ с применением выпрямителей. Также возбуждение СГ малой мощности может осуществляться от постоянных магнитов. Этот способ позволяет получить машину без контактных колец, следовательно уменьшаются потери и растет КПД. Вместе с тем, усложняется регулирование величины генерируемой ЭДС.

 

 

27.Регулирование частоты вращения АД с КЗ ротором

 

Частота вращения ротора асинхронного двигателя

Из этого выражения следует, что частоту вращения ротора асинхронного двигателя можно регулировать изменением какой-либо из трех величин: скольжения s, частоты тока в обмотке статора f1 или числа полюсов в обмотке статора . Регулирование частоты вращения изменением скольжения s возможно следующими способами: изменением подводимого к обмотке статора напряжения; нарушением симметрии этого напряжения.

Регулирование частоты вращения изменением подводимого напряжения. Вращающий момент АД пропорционален , поэтому механические характеристики двигателя при напряжениях меньших номинального располагаются ниже естественной. Это объясняется недопустимостью подведения напряжения выше номинального. Если статический момент МСТ остается постоянным, то при снижении напряжения на обмотке статора скольжение АД увеличивается, частота вращения ротора уменьшается. Регулирование скольжения этим способом возможно в пределах 0 < s < sКР. Диапазон регулирования частоты вращения получается небольшим, что объясняется узкой зоной устойчивой работы двигателя. Диапазон ограничен недопустимостью значительного превышения номинального напряжения и значением критического скольжения. С превышением номинального напряжения возникает опасность чрезмерного нагрева АД, вызванного резким увеличением электрических и магнитных потерь. Двигатель с более значительным критическим скольжением имеет большее значение электрических потерь, а значит и меньший КПД. С уменьшением напряжения U1 двигатель утрачивает перегрузочную способность и при нагрузках близких к номинальной происходит увеличение суммарных потерь и нагрева АД. Узкий диапазон регулирования и неэкономичность – недостатки. В данном способе регулирования могут быть применены схемы с использованием регулировочного автотрансформатора; дросселем насыщения; тиристорным регулятором напряжения. Регулирование частоты вращения нарушением симметрии подводимого напряжения. При нарушении симметрии трехфазной системы переменного напряжения, подводимой к АД, вращающееся магнитное поле статора становится эллиптическим. Такое поле содержит обратную составляющую (встречное поле), которая создает момент Мобр,направленный встречно вращающему моменту Мпр, поэтому результирующий электромагнитный момент АД уменьшается: . Механические характеристики двигателя в этом случае располагаются в интервале между характеристикой при симметричном напряжении (1) и характеристикой при однофазном питании (2) - пределом несимметрии 3-х фазного U. Ре несимметрии подводимого напряжения. Обеспечивается включением в одну из фаз однофазного регулировочного автотрансформатора AT.

Недостатками этого способа регулирования являются узкий диапазон регулирования и уменьшение КПД двигателя при увеличении несимметрии напряжения.

Регулирование частоты вращения изменением частоты тока в обмотке статора. Это способ регулирования основан на изменении синхронной частоты вращения , что возможно при наличии источника питания АД с регулируемой частотой -преобразователя частоты (ПЧ). Частотное регулирование позволяет плавно изменять частоту вращения ротора в широком диапазоне. Чтобы регулировать частоту вращения, достаточно изменить частоту тока f1, но при этом будет изменяться и максимальный электромагнитный момент АД. Поэтому для сохранения неизменными перегрузочной способности, коэффициента мощности и КПД двигателя на требуемом уровне необходимо одновременно с изменением частоты f1 изменять и величину подводимого к обмотке статора напряжения U1. Если частота вращения ротора АД регулируется при постоянном моменте нагрузки , то подводимое к обмотке статора напряжение необходимо изменять пропорционально изменению частоты тока: . Если регулирование производится при условии постоянства мощности двигателя , то подводимое напряжение к обмотке статора следует изменять в соответствии с законом

Регулирование частоты вращения изменением числа полюсов обмотки статора. Этот способ регулирования частоты вращения обеспечивает ступенчатую регулировку. Изменять число полюсов обмотки статора можно либо укладкой в пазах статора двух обмоток с разным числом полюсов, либо укладкой одной обмотки, конструкция которой позволяет путем переключения катушечных групп получать различное число полюсов. Второй способ получил наибольшее применение. АД с полюсно-переключаемыми обмотками могут работать в двух режимах: режим постоянного момента, режим постоянной мощности.


Пуск АД с фазным ротором

При пуске АД должны соблюдаться следующие требования.

1) АД должен развивать достаточно большой пусковой момент, достаточный для преодоления статического момента сопротивления на валу. 2) Величена пускового тока должна быть ограничена такой величиной, чтобы не происходило повреждения АД и нарушения нормального режима работы сети. Помимо пусковых значений тока и момента пусковые свойства двигателей оцениваются еще и такими показателями: продолжительность и плавность пуска, сложность пусковой опе­рации, ее экономичность (стоимость и надежность пусковой аппаратуры и потери энергии в ней). Наличие контактных ко­лец у двигателей с фазным рото­ром позволяет подключить к об­мотке ротора пусковой реостат (ПР). При этом активное сопро­тивление цепи ротора увеличива­ется до значения R2=r2’+rд, где rд — электрическое сопротивление пускового реостата, приведенное к обмотке статора.

Пусковые свойства двигателя определяются в первую очередь значением пускового тока Iп или его кратностью IП/Iном и значением пускового мо­мента Мп или его кратностью Мп/МНОМ . В начальный момент пуска скольжение s=l, поэтому, пренебрегая током хх, пусковой ток мож­но определить:

В процессе пуска двигателя ступени ПР переклю­чают таким образом, чтобы ток ротора оставался приблизительно неизменным, а среднее значение пускового момента было близко к наибольшему. Так, в начальный момент пуска (первая ступень рео­стата) пусковой момент равен Мпмакс. По мере разгона АД его момент уменьшается по кривой 1. Как только значение момента уменьшится до значения Mпmin, рычаг реостата перево­дят на вторую ступень и сопротивление реостата уменьшается. Теперь зависимость М=f(s) выражается кривой 2 и пусковой момент двигателя вновь достигает Мпмакс. Затем ПР переключают на третью и на четвертую ступени (кривые 3 и 4). После того как электромагнитный момент двигателя уменьшится до значе­ния, равного значению противодействующего момента на валу двигателя, частота вращения ротора достигнет установившегося значения и процесс пуска двигателя будет закончен. В течение всего процесса пуска значение пускового момента остается приблизительно постоянным, равным Мп.ср. Следует иметь в виду, что при слишком быстром переключении ступеней реостата пусковой ток может достигнуть недопустимо больших значений.

Трехфазная асинхронная машина при неподвижном роторе. Основные уравнения для цепей статора и ротора. Параметры короткозамкнутой обмотки ротора. Приведение параметров вторичной цепи к числу витков и фаз первичной.

Как следует из принципа действия асинхронного двигателя, обмотка ротора не имеет электрической связи с обмоткой статора. Между этими обмотками существует только магнитная связь, энергия из обмотки статора в обмотку ротора передается магнитным полем. В процессе работы асинхронного двигателя токи в обмотках статора и ротора создают две магнитодвижущие силы; МДС статора и МДС ротора.

Основной магнитный поток Ф, вращающийся с частотой n1, наводит в неподвижной обмотке статора ЭДС Е1. I1r1 – падение напряжения в активном сопротивлении обмотки статора r1. U1 – напряжение сети, в которую включен статор. jI1x1 - магнитный поток рассеяния. Т.о. имеем уравнение напряжений обмотки статора:

Данное уравнение полностью идентично уравнению первичной обмотки тр-ра.

При условии неподвижности ротора асинхронной машины скольжение s=1. Откуда следует, что частота ЭДС ротора f2=f1. С учетом данного факта получим по второму закону Кирхгофа уравнение напряжений для обмотки ротора:

Параметры короткозамкнутой обмотки ротора??????

Приведение параметров вторичной цепи к числу витков и фаз первичной цепи применяется с целью построения векторов ЭДС, напряжений и токов статора о ротора на одной векторной диаграмме. Обмотку ротора с числом фаз m2, обмоточным коэффициентом коб2, и числом витков одной фазы w2 заменяют обмоткой с m1, w1 и коб1. При этом мощности и фазовые сдвиги векторов ЭДС и токов ротора после приведения должны остаться такими же, что и до приведения. При s=1 приведенная ЭДС ротора определяется как Е`2 = Е2ке, где ке= коб1w1/ коб2w2 – коэффициент трансформации напряжения в АМ при неподвижном роторе. Приведенный ток ротора I`2 = I2/ki, где ki = m1коб1w1/ (m2коб2w2) – коэффициент трансформации тока АМ. С учетом этих коэффициентов производят пересчет активных и индуктивных сопротивлений. Уравнение напряжений ротора в приведенном виде будет выглядеть как:

 

 


 

Электромагнитного тормоза.

 

r1 – активное сопротивление обмотки статора;

хσ1 – индуктивное сопротивление рассеяния обмотки статора;

- ток, протекающий в обмотке статора.

- напряжение питания АД;

r'2 – приведенное активное сопротивление обмотки ротора;

х'σ2 – приведенное индуктивное сопротивление рассеяния обмотки ротора;

s – скольжение АД;

- приведенный ток ротора;

- ЭДС обмотки статора;

- приведенная ЭДС обмотки ротора.

 

Параллельная работа трансформаторов. Условия включения на параллельную работу трехфазных трансформаторов. Распределение нагрузки между трансформаторами при параллельной работе.

Параллельной работой двух или нескольких трансформаторов называется работа при параллельном соединении их обмоток как на первичной, так и на вторичной сторонах. При параллель­ном соединении одноименные зажимы трансформаторов присо­единяют к одному и тому же проводу сети. Применение нескольких параллельно включенных трансформаторов вместо одного трансформатора суммарной мощности необходимо для обеспечения бесперебойного энергоснабжения в случае аварии в каком-либо трансформаторе или отключения его для ремонта. Это также целесообразно при работе трансформаторной подстанции с переменным графиком нагрузки. В этом случае при уменьшении мощности нагрузки можно отключить один или несколько трансформаторов для того, чтобы нагрузка трансформаторов, оставшихся вклю­ченными, была близка к номинальной.

1.При одинаковом первичном напряжении вторичные напря­жения должны быть равны. Другими словами, трансформаторы должны иметь одинаковые коэффициенты трансформации: К1= К2= К3=.... При несоблюдении этого условия, между параллельно включенными тр а нсформаторами возникает уравнительный ток, обусловленный разностью вторич­ных напряжений трансформаторов. Iур=DU/(ZK1+ZK2),где ZK1и ZK2 - внутренние сопротивления трансформаторов. При нагрузке трансформаторов уравнительный ток наклады­вается на нагрузочный. При этом трансформатор с более высоким вторичным напряжением х.х. (с меньшим коэффициентом трансформации) оказывается перегруженным, а трансформатор равной мощ­ности, но с большим коэффициентом трансформации - недогруженным.

2.Тр-ры должны принадлежать к одной группе соединения. При несоблюдении этого условия вторичные линей­ные напряжения трансформаторов окажутся сдвинутыми по фазе относительно друг друга и в цепи трансформаторов появится разностное напряжение DU, под действием которого возникнет значительный уравнительный ток.

3.Тр-ры должны иметь одинаковые напряже­ния к.з.: Uki=Uk2=Uk3=..... Соблюдение этого условия необ­ходимо для того, чтобы общая нагрузка распределялась между трансформаторами пропорционально их номинальным мощно­стям. (S1/S1н)/(S2/S2н)=Uk2/Uk1 Из соотношения следует, что относительные мощности параллельно работающих трансформаторов обратно пропорциональны их напряжениям к.з. Т.е. при неравенстве напряжений к.з. параллельно работающих трансформаторов больше нагружается трансформатор с меньшим на­пряжением к.з. В итоге это ведет к перегрузке одного трансформатора (с меньшим Uk) и недогрузке другого (с большим Uk).

4. Помимо соблюдения указан­ных трех условий необходимо перед включением трансформаторов на параллельную работу проверить порядок чередования фаз, который должен быть одинаковым у всех трансформаторов.




Поделиться:


Последнее изменение этой страницы: 2016-09-05; просмотров: 436; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.165.149 (0.009 с.)