Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятие о сенсорных рецепторах.

Поиск

В каждом сенсорном органе есть рецептор, с возбуждения, которых начинается сенсорный процесс. Они преобразуют энергию стимула в изменение проницаемости своей мембраны. Этот процесс называется трансдукцией. Вместе проницаемостью меняется и потенциал мембраны: он становится рецепторным. Рецепторный потенциал генерирует ПД, и его называют генераторным.

Рецептор- это клетка или часть его мембраны, генерирующая рецепторные потенциалы, которые кодируются и передаются по соответствующим афферентам в виде последовательностей потенциалов действий.

Рецепторы бывают: По его месторасположению: экстерорецепторы воспринимают сигналы внешней среды т.е органы и рецепторы, стимулируемые окружающей средой. К ним относят фоторецепторы сетчатки глаза, фонорецепторы кортиевого органа, вестибулорецепторы полукружных каналов и мешочков преддверия, тактильные, температурные, болевые рецепторы кожи и слизистых оболочек, вкусовые рецепторы языка, обонятельные рецепторы носа.

Интерорецепторы предназначены для детекции сигналов внутренней среды т.е. сенсорная информация поступает от внутренних органов – механорец-, хемо- термо-, вестибулорецепторы, ноцицепторы внутренних органов. Разновидностью интерорецепторов являются проприорецепторы - мышечные веретена, сухожильные и суставные рецепторы т.е. рецепторы опорно- двигательного аппарата.

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые, обонятельные) и контактные - возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

Сенсорные рецепторы в зависимости от их структуры и взаимоотношения с афферентными сенсорным нейроном делятся на два класса: первичночувствующие и вторичночувствующие рецепторы.

К первичночувствующим сенсорным рецепторам относят те рецепторы, которые представляют собой видоизмененное, специализированное окончание дендрита афферентного нейрона. Афферентный нейрон непосредственно взаимодействует с внешним стимулом. К таким рецепторам относятся отдельные виды механорецепторов (кожи и внутренних органов), холодовые и тепловые терморецепторы, ноцицепторы, мышечные веретена, сухожильные рецепторы, суставные рецепторы, обонятельные рецепторы.

Вторичночувствующие рецепторы - специально приспособленные для восприятия внешнего сигнала клетки нервного происхождения. К таким рецепторам относятся многие виды механорецепторов (тельца Пачини, диски Меркеля, клетки Мейсснера), фоторецепторы, вестибулорецепторы, фонорецепторы, вкусовые рецепторы.

 

Большая часть информации, посылаемой в ЦНС интерорецепторами, очень редко доходит до нашего сознания или вообще никогда не воспринимается. Н-р, мы и не подозреваем о сигналах барорецепторов, расположенных в синокротидном синусе, которые непрерывно контролируют АД.

Функции рецепторов: восприятие раздражения всегда специфично), перевод специфического раздражения в неспецифический (электрическая импульсация т.е. перевод энергии раздражения в рецепторный потенциал) и кодирование сигнала (с целью переведение сигнала в форму, понятную для центра.

Анализаторы имеют рецептивное поле – участок тела, реализующие определенные рефлексы, в результате формируется образ.

Свойства рецепторного отдела анализатора:

1.Специфичность- способность воспринимать определенный раздражитель.

2. Высокая чувствительность – способность реагировать на очень малые по интенсивности параметры адекватного раздражителя;

3. Ритмическая генерация импульсов возбуждения в ответ раздражителя;

4.Адаптация – способность приспосабливаться к действию раздражителя, которая выражается в снижении активности рецептора и частоты генерации импульсов возбуждения.

5.Функциональная мобильность – увеличение или уменьшение количества функционирующих рецепторов в зависимости от условий окружающей среды и функционального состояния организма.

6.Специализация рецепторов к определенным параметрам адекватного раздражителя. Одни рецепторы реагируют на начало его действия, другие –на прекращения, третьи – на изменение интенсивности и т.д.

7. Способность к элементарному первичному анализу благодаря связи между отдельными рецепторами периферического отдела, отражающими отдельные параметры раздражителя. Деятельность рецепторов осуществляется не изолированно, а во взаимодействии, в связи с чем, уже на рецепторном уровне происходит разложение раздражителя на его части.

Проводниковый отдел образован афферентными нейронами (нервами) и проводящими путями мозга (центрами спинного и стволовой части головного мозга). В этом отделе происходит распределение направления потоков и отсеивание избыточной информации, ее перекодирование, преобразование. Этот отдел осуществляет первичную обработку специфического возбуждения и проведение его в кору большого мозга.

Афферентные нейроны – первые нейроны, которые участвуют в обработке сенсорной информации. Они локализованы в ганглиях (спинномозговые ганглии, ганглии головы и шеи, н-р вестибулярный ганглий, спиральный ганглий и т.д.).

Исключением являются фоторецепторы – их афферентные нейроны (ганглиозные клетки) лежат непосредственно на сетчатке.

Нервные импульсы по аксонам афферентных нейронов направляются в кору больших полушарий через ряд сенсорных центров, в каждом из которых осуществляется необходимый анализ соответствующей сенсорной информации. Весь восходящий поток информации от периферического отдела каждой сенсорной системы можно разделить на четыре отдельных потоков: специфический, ассоциативный, неспецифический, передаточный. Одновременно имеется нисходящий, эфферентный путь, который регулирует пропускную способность центральных путей и тем самым контролирует объем и качество поступающей к коре больших полушарий сенсорной информации.

Центральное звено (мозговой или корковый отдел) – это участки коры больших полушарий, где осуществляется окончательная обработка возбуждения - воспринимающие афферентные сигналы, выполняющие их детектирование, опознание образов, высший анализ поступающей информации и ее интеграцию. Центральное звено обязательно находится в коре и участвует формирование образ.

Центральное звено у каждого анализатора имеет специфический центр. Сенсорная функция коры тесно связано с ассоциативной функцией. Много ассоциативных нейронов в лобных долях коры.

Выделяют по характеру (модальности) ощущений: обонятельный, вкусовой, слуховой, зрительный, вестибулярный, тактильный, температурный, болевой и др. анализаторы.

ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР

- один из самых важных анализаторов, т.к. дает более 90% сенсорной информации.

Зрительное восприятие начинается с проекции изображения на сетчатку глаза и возбуждения фоторецепторов, затем информация последовательно обрабатывается в подкорковых и корковых зрительных центрах, в результате чего возникает зрительный образ, который благодаря взаимодействию зрительного анализатора с другими анализаторами правильно отражает объективную реальность.

Зрительныйанализатор- совокупность структур, воспринимающих световое излучение (электромагнитные волны с длиной 390-670нм) и формирующих зрительные ощущения.

Он позволяет различать освещенность предметов, их цвет, форму, размеры, характеристики передвижения, пространственную ориентацию в окружающем мире.

Орган зрения состоит из глазного яблока, зрительного нерва и вспомогательных органов глаза. Глаз состоит из оптической и фоторецепторной частей и имеет три оболочки: белочную, сосудистую и сетчатую.

Оптическая система глаза обеспечивает светопреломляющую функцию и состоит из светопреломляющих (рефракционных) сред (преломление – с целью фокусировки лучей в одной точке на сетчатке): Прозрачной роговицы (сильная рефракционная способность);

жидкость передней и задней камер;

хрусталика, окруженного прозрачной сумкой, реализует аккомодацию- изменение рефракции;

стекловидного тела, занимающего большую часть глазного яблока (слабая рефракц. способность).

Глазное яблоко имеет шаровидную форму. В нем выделяют передний и задний полюс. Передний полюс - наиболее выступающая точка роговицы, задний полюс расположен латерально от места выхода зрительного нерва. Соединяющая оба полюса условная линия – наружная ось глаза, она равна 24мм и находится в плоскости меридиана глазного яблока. Глазное яблоко состоит из ядра (хрусталик, стекловидное тело), покрытого тремя оболочками: наружной(фиброзная или белочная), средней (сосудистой),внутренней(сетчатой).

Роговица – прозрачная выпуклая пластинка блюдцеобразной формы, лишена кровеносных сосудов. Различное количество и качества пигмента меланина на пигментном слое радужной оболочки обуславливает цвет глаза - карий, черный (при наличии большого количества меланина), голубой и зеленоватый, если его мало. У альбиносов нет пигмента вообще, у них радужная оболочка не окрашена, сквозь нее просвечивают кровеносные сосуды и поэтому радужка кажется красной.

Хрусталик – прозрачная двояковыпуклая линза (т.е. увеличительное стекло) диаметром около 9мм, имеющая переднюю и заднюю поверхности. Передняя поверхность более плоская. Линия, соединяющая наиболее выпуклые точки обеих поверхностей, называется осью хрусталика. Хрусталик как бы подвешен на ресничном пояске, т.е. на цинновой связке.

Кривизна хрусталика зависит от цилиарной мышцы, она напрягается. При чтении, при смотрении вдаль эта мышца расслабляется, хрусталик становится плоским. При смотрении вдаль – менее выпуклый хрусталик.

Т.о. при натяжении связки, т.е. расслаблении ресничной мышцы хрусталик уплощается(установка на дальнее видение), при расслаблении связки, т.е. при сокращении ресничной мышцы, выпуклость хрусталика увеличивается (установка на ближнее видение) Это и называется аккомодацией.

Хрусталик имеет форму двояковыпуклой линзы. Его функция заключается в преломлении проходящих через него лучей света и фокусировке изображения на сетчатке.

Стекловидное тело – прозрачный гель, состоящий из внеклеточной жидкости с коллагеном и гиалуроновой кислотой в коллоидном растворе. Заполняет пространство между сетчаткой сзади, хрусталиком и задней стороной ресничного пояска спереди. На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

В задней части глаза его внутренняя поверхность выстлана сетчаткой. Промежуток между сетчаткой и плотной склерой, окружающее глазное яблоко, заполнен сетью кровеносных сосудов – сосудистой оболочкой. У заднего полюса глаза человека в сетчатке есть небольшое углубление - центральная ямка – место, где острота зрения при дневном освещении максимальна.

Сетчатка представляет собой внутреннюю (светочувствительная) оболочку глазного яблока, на всем протяжении прилежит изнутри к сосудистой оболочке.

Состоит из 2-х листков: внутреннего – светочувствительного, наружного пигментного. Сетчатка делится на две части: заднюю - зрительную и переднюю- (ресничную) которая не содержит фоторецепторов.

Место выхода зрительного нерва из сетчатки - называют диском зрительного нерва или слепым пятном. Оно не содержит фоторецепторов, нечувствительно к свету. Со всей сетчатки к зрительному пятну сходятся нервные волокна, образующие зрительный нерв.

Латеральнее, на расстоянии около 4 мм от слепого пятна выделяют особый участок наилучшего видения – желтое пятно (имеются каротиноиды).

В области желтого пятна отсутствуют кровеносные сосуды. В его центре находится так называемая центральная ямка, которая содержит колбочки.

Она является местом наилучшего видения глаза. По мере удаления от центральной ямки количество колбочек уменьшается, а палочек увеличивается

В сетчатке различают 10 слоев.

Рассмотрим основные слои: наружный - фоторецепторный(слой палочек и колбочек);

пигментный, самый внутренний, плотно примыкающий непосредственно к сосудистой оболочке;

слой биполярных и ганглиозных (аксоны составляют зрительный нерв) клеток. Над слоем ганглиозных клеток находятся их нервные волокна, которые, собираясь вместе, образуют зрительный нерв.

Световые лучи проходят через все эти слои.

Восприятие света осуществляется с участием фоторецепторов, которые относятся ко вторичночувствующим рецепторам. Это означает, что они представляют собой специализированные клетки, передающие информацию о квантах света на нейроны сетчатки, вначале на биполярные нейроны, затем на ганглиозные клетки, информация затем поступает на нейроны подкорковых (таламус и передние бугры четверохолмия) и корковые центры (первичное проекционное поле 17, вторичные проекционные поля 18 19) зрения. Кроме того, в процессах передачи и переработке информации в сетчатке участвуют горизонтальные и амокриновые клетки.

Все нейроны сетчатки образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому ее называют частью мозга, вынесенной на периферию.

Рецепторный отдел зрительного анализатора состоит из фоторецепторных клеток: палочек и колбочек. В сетчатке каждого глаза человека находится 6-7 млн. колбочек и 110-125 млн. палочек. Они распределены в сетчатке неравномерно.

Центральная ямка сетчатки содержит только колбочки. По направлению от центра к периферии сетчатки их число уменьшается, а число палочек возрастает. Колбочковый аппарат сетчатки функционирует в условиях больших освещенностей, они обеспечивают дневное и цветовое зрение; палочковый аппарат ответственен за сумеречное зрение. Колбочки воспринимают цвет, палочки – свет.

В фоторецепторных клетках содержатся светочувствительные пигменты: в палочках – родопсин, в колбочках – йодопсин.

Поражение колбочек вызывает светобоязнь: человек видит при слабом свете, но слепнет при ярком. Отсутствие одного из видов колбочек приводит к нарушению цветоощущения, т.е к дальтонизму. Нарушение функции палочек, возникающее при недостатке в пище витамина А вызывает расстройства сумеречного зрения- куриную слепоту: человек слепнет в сумерках, но днем видит хорошо.

Совокупность фоторецепторов, посылающих свои сигналы к одной ганглиозной клетке, образует ее рецептивное поле.

Цветовое зрение – способность системы зрения реагировать на изменение длины световой волны с формированием цветоощущения.

Цвет воспринимается при действии света на центральную ямку сетчатки, где расположены исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становится хуже. Периферия сетчатки, где находятся палочки, не воспринимает цвет. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет. Поле зрения – это пространство, которое видит один глаз при неподвижном взоре.

Нейроны сетчатки.

Фоторецепторы сетчатки синаптически связаны с биполярными нейронами.

Биполярные нейроны – первый нейрон проводникового отдела зрительного анализатора. При действии света уменьшается выделение медиатора (глутамат) из пресинаптического окончания фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиозные клетки,аксоны которых являются волокнами зрительного нерва. Передача сигнала с фоторецепторов на биполярный нейрон, так и от него на ганглиозную клетку происходит безимпульсным путем. Биполярный нейрон не генерирует импульсов, в виду предельно малого расстояния, на который он передает сигнал.

Аксоны ганглиозных клеток образуют зрительный нерв. Импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке.

Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют ее рецептивное поле этой клетки.

Т.О. каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. В центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной карликовой биполярной клеткой, с которой соединена одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, резко уменьшает световую чувствительность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные) и между биполярными и ганглиозными клетками (амакриновые клетки). Горизонтальные(звездчатые) и амакринные клетки играют важную роль в процессах анализа и синтеза в нейронах сетчатки. На одну ганглиозную клетку конвергируют до сотни биполярных клеток и рецепторов.

ИЗ сетчатки (биполярные клетки предают сигнализацию на ганглиозные клетки сетчатки, аксоны которых идут в составе правого и левого зрительных нервов) зрительная информация по волокнам зрительного нерва (2-ая пара черепных нервов) устремляется в мозг. Зрительные нервы от каждого глаза встречаются у основания мозга, где формируется их частичный перекрест или хиазма. Здесь часть волокон каждого зрительного нерва переходит на противоположную сторону от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое полушарие мозга информацией от обоих глаз. В затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие - от левых половин сетчаток.

После зрительного перекреста зрительные нервы называю ЗРИТЕЛЬНЫМИ ТРАКТАМИ. Они проецируются в ряд мозговых структур. В каждом зрительном тракте содержатся нервные волокна, идущие от внутреннего региона сетчатки глаза одноименной стороны и от наружной половины сетчатки другого глаза. После перекреста волокна зрительного тракта направляются к наружным коленчатым телам таламуса, где импульсы переключаются на нейроны, аксоны которых направляются к коре большого мозга в первичную проекционную область зрительной зоны коры(стриарная кора или 17-ое поле по Бродману), затем во вторичную проекционную зону(поле18 и 19, престиарная кора), а в затем – в ассоциативные зоны коры. Корковый отдел зрительного анализатора расположен в затылочной доле (17,18,10-е поля по Бродману). Первичная проекционная область (17-е поле) осуществляет специализированную, но более сложную, чем в сетчатке и в наружных коленчатых телах, переработку информацию. В каждом участке коры сконцентрированы нейроны, которые образуют функциональную колонку. Часть волокон от ганглиозных клеток идут к нейронам верхних бугорков и крыше среднего мозга, в претектальную область и подушку в таламусе (из подушки передается на область 18-ого и 19-ого полей коры).

Претектальная область ответственна за регуляции диаметра зрачка, а передние бугры четверохолмия связаны с глазодвигательными центрами и высшими отделами зрительной системы. Нейроны передних бугров обеспечивают реализацию ориентировачных(сторожевых) зрительных рефлексов. Из передних бугров импульсы идут в ядра глазодвигательного нерва, иннервирующие мышцы глаза, ресничную мышцу и мышцу, суживающую зрачок. Благодаря этому, в ответ на попадание световых волн в глаз зрачок суживается., глазные яблоки поворачиваются в направлении пучка света.

Часть информации от сетчатки по зрительному тракту поступает к супрахиазматическим ядрам гипоталамуса, обеспечивая реализацию околосуточных биоритмов.

Цветовое зрение.

Большинство людей способно различать основные цвета и их многочисленные оттенки. Это объясняется воздействием на фоторецепторы различных по длине волны электромагнитных колебаний.

Цветовое зрение – способность зрительного анализатора воспринимать световые волны различной длины. Цвет воспринимается при действии света на центральную ямку сетчатки, где расположены исключительно колбочки(воспринимают в синем, зеленом, красном диапазоне). По мере удаления от центра сетчатки восприятие цвета становится хуже. Периферия сетчатки,где находятся палочки не воспринимает цвет. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет.

Человек, имеющий все три вида колбочек(красный, зеленый, синий), т.е. трихромат, обладает нормальным цветовосприятием. Отсутствие одного из типа колбочек приводит к нарушению цветоощущения. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения, мы не различаем цвет.

Дальтонизм выражается в выпадении восприятия одного из компонентов трехцветного зрения. Возникновение его связывают с отсутствием определенных генов в половой непарной у мужчин Х хромосоме. (таблицы Рабкина- полихроматические таблицы). Ахромазия – это полная цветовая слепота, возникающая вследствие поражения колбочкового аппарата сетчатки. При этом все предметы видятся человеком лишь в разных оттенка серого цвета.

Протанопия «краснослепые»- не воспринимают красного цвета, сине-голубые лучи кажутся бесцветными. Дейтеранопия – «зеленослепые» - не отличают зеленых цветов от темно- красных и голубых; Тртанопия –фиолетовослепые, не воспринимают синего и фиолетового цвета.

Бинокулярное зрение – это одновременное видение предметов двумя глазами, которое дает более выраженное ощущение глубины пространства по сравнению с монокулярным зрением (т.е. зрением одним глазом). Обусловлено симметричным расположением глаз.

Аккомодация – настройка оптического аппарата глаза на определенное расстояние, в результате которой изображение предмета фокусируется на сетчатке.

Аккомодация – приспособление глаза к ясному видению объектов, удаленных на разном расстоянии от глаза. Именно это свойство глаза позволяет одинаково хорошо видеть предметы, находящиеся вблизи или вдали. У человека аккомодация осуществляется за счет изменения кривизны хрусталика - при рассмотрении далеких предметов кривизна уменьшается до минимума, а при рассмотрении близко расположенных предметов – его кривизна увеличивается (выпуклый).

Аномалии рефракции.

Отсутствие необходимого фокусирование изображения на сетчатке глаза мешает нормальному видению.

Миопия (близорукость) - это вид нарушения рефракции, при котором лучи от предмета после прохождения через светопреломляющий аппарат фокусируются не на сетчатке, а впереди ней - в стекловидном теле, т.е. главный фокус находится перед сетчаткой вследствие увеличения продольной оси. Продольная ось глаза слишком длинная. В этом случае у человека нарушено восприятие далеких предметов. Коррекция такого нарушения проводится с помощью с двояковогнутыми линзами, которые отодвинут сфокусированные изображение на сетчатке.

При гиперметропии (дальнозоркость) - лучи от далеко расположенных предметов в силу слабой преломляющей способности глаза или малой длины глазного яблока фокусируются за сетчаткой, т.е. главный фокус находится за сетчаткой вследствие короткой продольной оси глаза. В дальнозорком глазу продольная ось глаза укорочена. Этот недостаток рефракции может быть компенсирован увеличением выпуклости хрусталика. Поэтому дальнозоркий человек напрягает аккомодационную мышцу, рассматривая не только близкие, но и далекие объекты.

Астигматизм (неодинаковое преломление лучей в разных направлениях) – это такой вид нарушения рефракции, при котором отсутствует возможность схождения лучей в одной точке сетчатки, вследствие различной кривизны роговицы на разных ее участках (в различных плоскостях), в результате чего главный фокус в одном месте может попадать на сетчатку, в другом находиться перед ней или за ней, что искажает воспринимаемое изображение.

Дефекты оптической системы глаза компенсируются в совмещении главного фокуса преломляющих сред глаза сетчаткой.

В клинической практике используют очковые линзы: при миопии – двояковогнутые (рассеивающие) линзы; при гиперметропии – двояковыпуклые (собирательные) линзы; при астигматизме – цилиндрические линзы с различной преломляющей силой в разных их участках.

Аберрация – искажение изображения на сетчатке, вызванное особенностями преломляющих свойств глаза для световых волн различной длины (дифракционная, сферическая, хроматическая).

Сферическая аберрация - неодинаковое преломление лучей в центральном и периферическом участках роговицы и хрусталика, что введет к рассеиванию лучей и резкому изображению.

Острота зрения – способность видеть две максимально близко расположенные точки как различные, т.е. наименьший угол зрения, при котором глаз способен видеть две точки отдельно. Угол между падениями лучей = 1(секунда). В практической медицине остроту зрения обозначают в относительных единицах. При нормальном зрении острота зрение = 1. Острота зрения зависит от количества возбудимых клеток.

 

Слуховой анализатор

- это совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания. Звуковые сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга.

У человека слуховой анализатор представлен периферическим отделом (наружное, среднее, внутреннее ухо), проводниковым отделом, корковым (височная слуховая кора)

Бинауральный слух – способность слышать одновременно двумя ушами и определять локализацию источника звука.

Звук – колебательные движения частиц упругих тел, распространяющиеся в виде волн в самых различных средах включая, воздушную, и воспринимающиеся ухом. Звуковые волны характеризуются частотой и амплитудой. Частота звуковых волн определяет высоту звука. Ухо человека различает звуковые волны с частотой от 20 до 20000 Гц. Звуковые волны, имеющие гармонические колебания называют тоном. Звук, состоящий из не связанных между собой частот – шум. При большой частоте звуковых волн тон высокий, при малой – низкий.

Звуки разговорной речи имеют частоту 200- 1000Гц. Малые частоты составляют басовый певческий голос, высокие частоты – сопрано.

Единицей измерения громкости звука является децибел. Гармоническое сочетание звуковых волн формирует –тембр звука. По тембру можно различать звуки одинаковой высоты и громкости, на чем основано узнавание людей по голосу.

Периферическая часть у человека морфологически объединена с периферической частью вестибулярного анализатора и поэтому называют орган слуха и равновесия.

Наружное ухо представляет собой звукоулавливающий аппарат. Оно состоит из ушной раковины и наружного слухового прохода, который отделяется барабанной перепонкой от среднего.

Ушная раковина обеспечивает улавливание звуков, их концентрацию в направлении наружного слухового прохода и усиление их интенсивности.

Наружный слуховой проход проводит звуковые колебания к барабанной перепонке, отделяющая наружное ухо от барабанной полости или среднего уха. Колеблется при действии звуковых волн.

Наружный слуховой проход и среднее ухо разделены барабанной перепонкой.

С физиологической точки зрения – слаборастяжимая мембрана. Назначение его- передавать дошедшие до нее по наружному слуховому проходу звуковые волны, точно воспроизводя их силу и частоту колебаний.

Среднее ухо

состоит из барабанной полости (заполненная воздухом), в которой расположены три слуховые косточки: молоточек, наковальня, стремечко.

Рукоятка молоточка сращена с барабанной перепонкой, другая его часть имеет сочленение с наковальней, которая воздействует на стремечко, передающее колебание на мембрану овального окна. К стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Площадь овального окна в 22 раз меньше барабанной перепонки, во столько же раз усиливает его давление на мембрану овального окна. Даже слабые волны, действующие на барабанную перепонку,способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям овального окна жидкости в улитке.

В полости среднего уха давление равно атмосферному. Это достигается благодаря наличию евстахиевой трубы, соединяющей барабанную полость с глоткой. При глотании евстахиева труба открывается, и давление в среднем ухе уравнивается с атмосферным. Это важно при резком перепаде давления- при взлете и посадке самолета, в скоростном лифте и т. Своевременное раскрытие евстахиевой трубы способствует выравниванию давления, снимает неприятные ощущения и предупреждает разрыв барабанной перепонки.

Внутреннее ухо.

Содержит рецепторный аппарат 2-х анализаторов: вестибулярного (преддверие и полукружные каналы) и слухового, к которому относится улитка с кортиевым органом. Внутреннее ухо расположено в пирамиде височной кости.

Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. Улитка - спирально закрученный костный канал, имеющий 2,5 завитка, почти до самого конца улитки, костный канал разделен 2-мя перепонками: более тонкой – преддверной (вестибулярной) мембраной (мембраной Рейснера) и плотной и упругой - основной мембраной. На вершине улитки обе эти мембраны соединяются, и в них имеются овальное отверстие улитки – геликотрема. Вестибулярная и основная мембрана разделяют костный канал улитки на 3 хода: верхний, средний, нижний. Верхний канал улитки соединяется с нижним каналом (барабанная лестница) Верхний и нижний каналы улитки заполнены перилимфой. Между ними находится средний канал, полость этого канала не сообщается с полостью других каналов и заполнена эндолимфой. Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат – спиральный (кортиев) орган, содержащий рецепторные волосковые клетки. Над волосками рецепторных клеток располагается текториальная мембрана. При прикосновении к ней (в результате колебаний основной мембраны)волоски деформируются и это приводит к возникновению рецепторного потенциала. Эти клетки трансформируют механические колебания в электрические потенциалы.

Звуковые волны вызывают колебания барабанной перепонки, которые через систему слуховых косточек среднего уха и мембрану овального окна передаются на перилимфу вестибулярной и барабанной лестниц. Это приводит к колебаниям эндолимфы и определенных участков основной мембраны. Звуки высокой частоты вызывают колебание мембраны, расположенных ближе к основанию улитки. В рецепторных клетках возникает рецепторный потенциал, под влиянием которого в окончаниях волокон слухового нерва генерируются ПД, передающиеся далее по проводящим путям.

Т.о.восприятие звука осуществляется с участием фонорецепторов. Их возбуждение под влиянием звуковой волны приводит к генерации рецепторного потенциала, который вызывает возбуждение дендритов биполярного нейрона спирального ганглия.



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 933; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.78.131 (0.015 с.)