Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физиология сенсорных систем.

Поиск

Физиология сенсорных систем.

Понятие о сенсорных системах.

Сенсорные системы мозга (или по Павлову анализаторы) – совокупность сенсорных рецепторов, специализированных вспомогательных аппаратов, многочисленных нейронов мозга, которые участвуют в обработке информации о сигналах внешнего и внутреннего мира, на основе которой формируются ощущения и восприятия – основа представления о мире.

Все анализаторы по Павлову состоят из 3-х основных отделов: периферического, проводникового, центрального или коркового.

В периферическом отделе с помощью сенсорных рецепторов происходит превращение сигнала внешнего мира в электрический процесс.

В проводниковом отделе осуществляется последовательная обработка сенсорной информации и проведение ее в высшие отделы мозга.

В центральном или корковом отделе совершается окончательная обработка сенсорной информации и формируется вначале ощущение (представление), а затем восприятие (перцепция). Восприятие составляет основу всей интеллектуальной деятельности человека, т.е. мышления.

Выделяют такие сенсорные системы как зрительная, слуховая, вестибулярная, соматическая (в том числе тактильная, температурная, ноцицептивная), проприоцептивная, вкусовая, обонятельная, висцеральная (интероцептивная). Итого 10 систем. Благодаря сенсорным системам у человека формируются соответственно 10 видов ощущений или чувств. В зрительной, слуховой, вестибулярной, соматической, вкусовой, обонятельной сенсорных системах периферический отдел устроен сложно и поэтому для обозначения сложно устроенных периферических отделов введено понятие как органы чувств. К ним относится глаз(орган зрения), ухо(орган слуха), вестибулярный аппарат(орган гравитации), кожа(орган осязания), вкусовые сосочки языка(орган вкуса), нос(орган обоняния).

На основании сенсорной информации реализуются многочисленные безусловные и условные рефлексы, в том числе интеллектуальные условные рефлексы, лежащие в психической деятельности человека.

Сенсорная система выполняет следующие функции: обнаружение, различение, передачу и преобразование, кодирование, детектирование признаков, опознание образов.

Классификация раздражителей.

Все сигналы внешней и внутренней среды, которые воспринимаются сенсорными системами мозга, различаются по модальности, т.е по той форме энергии, которая свойственна каждому из них.

Раздражители бывают механические, химические, осмотические, тепловые, световые, электрические. Они передаются с помощью различных форм энергии, например, свет - фотонами, химические раздражители – молекулами и ионами, механические – посредством механической формы энергии.

Все раздражители бывают адекватные и неадекватные.

 

 

Методы исследования сенсорных систем.

Для изучения сенсорных систем используют различные методы, включая электрофизиологические, нейрохимические, поведенческие, морфологические, психофизиологический анализ восприятия у здорового и больного человека. При изучении сенсорных систем применяют биофизическое или компьютерное моделирование, также протезирование (протезы зрительные).

ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР

- один из самых важных анализаторов, т.к. дает более 90% сенсорной информации.

Зрительное восприятие начинается с проекции изображения на сетчатку глаза и возбуждения фоторецепторов, затем информация последовательно обрабатывается в подкорковых и корковых зрительных центрах, в результате чего возникает зрительный образ, который благодаря взаимодействию зрительного анализатора с другими анализаторами правильно отражает объективную реальность.

Зрительныйанализатор- совокупность структур, воспринимающих световое излучение (электромагнитные волны с длиной 390-670нм) и формирующих зрительные ощущения.

Он позволяет различать освещенность предметов, их цвет, форму, размеры, характеристики передвижения, пространственную ориентацию в окружающем мире.

Орган зрения состоит из глазного яблока, зрительного нерва и вспомогательных органов глаза. Глаз состоит из оптической и фоторецепторной частей и имеет три оболочки: белочную, сосудистую и сетчатую.

Оптическая система глаза обеспечивает светопреломляющую функцию и состоит из светопреломляющих (рефракционных) сред (преломление – с целью фокусировки лучей в одной точке на сетчатке): Прозрачной роговицы (сильная рефракционная способность);

жидкость передней и задней камер;

хрусталика, окруженного прозрачной сумкой, реализует аккомодацию- изменение рефракции;

стекловидного тела, занимающего большую часть глазного яблока (слабая рефракц. способность).

Глазное яблоко имеет шаровидную форму. В нем выделяют передний и задний полюс. Передний полюс - наиболее выступающая точка роговицы, задний полюс расположен латерально от места выхода зрительного нерва. Соединяющая оба полюса условная линия – наружная ось глаза, она равна 24мм и находится в плоскости меридиана глазного яблока. Глазное яблоко состоит из ядра (хрусталик, стекловидное тело), покрытого тремя оболочками: наружной(фиброзная или белочная), средней (сосудистой),внутренней(сетчатой).

Роговица – прозрачная выпуклая пластинка блюдцеобразной формы, лишена кровеносных сосудов. Различное количество и качества пигмента меланина на пигментном слое радужной оболочки обуславливает цвет глаза - карий, черный (при наличии большого количества меланина), голубой и зеленоватый, если его мало. У альбиносов нет пигмента вообще, у них радужная оболочка не окрашена, сквозь нее просвечивают кровеносные сосуды и поэтому радужка кажется красной.

Хрусталик – прозрачная двояковыпуклая линза (т.е. увеличительное стекло) диаметром около 9мм, имеющая переднюю и заднюю поверхности. Передняя поверхность более плоская. Линия, соединяющая наиболее выпуклые точки обеих поверхностей, называется осью хрусталика. Хрусталик как бы подвешен на ресничном пояске, т.е. на цинновой связке.

Кривизна хрусталика зависит от цилиарной мышцы, она напрягается. При чтении, при смотрении вдаль эта мышца расслабляется, хрусталик становится плоским. При смотрении вдаль – менее выпуклый хрусталик.

Т.о. при натяжении связки, т.е. расслаблении ресничной мышцы хрусталик уплощается(установка на дальнее видение), при расслаблении связки, т.е. при сокращении ресничной мышцы, выпуклость хрусталика увеличивается (установка на ближнее видение) Это и называется аккомодацией.

Хрусталик имеет форму двояковыпуклой линзы. Его функция заключается в преломлении проходящих через него лучей света и фокусировке изображения на сетчатке.

Стекловидное тело – прозрачный гель, состоящий из внеклеточной жидкости с коллагеном и гиалуроновой кислотой в коллоидном растворе. Заполняет пространство между сетчаткой сзади, хрусталиком и задней стороной ресничного пояска спереди. На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

В задней части глаза его внутренняя поверхность выстлана сетчаткой. Промежуток между сетчаткой и плотной склерой, окружающее глазное яблоко, заполнен сетью кровеносных сосудов – сосудистой оболочкой. У заднего полюса глаза человека в сетчатке есть небольшое углубление - центральная ямка – место, где острота зрения при дневном освещении максимальна.

Сетчатка представляет собой внутреннюю (светочувствительная) оболочку глазного яблока, на всем протяжении прилежит изнутри к сосудистой оболочке.

Состоит из 2-х листков: внутреннего – светочувствительного, наружного пигментного. Сетчатка делится на две части: заднюю - зрительную и переднюю- (ресничную) которая не содержит фоторецепторов.

Место выхода зрительного нерва из сетчатки - называют диском зрительного нерва или слепым пятном. Оно не содержит фоторецепторов, нечувствительно к свету. Со всей сетчатки к зрительному пятну сходятся нервные волокна, образующие зрительный нерв.

Латеральнее, на расстоянии около 4 мм от слепого пятна выделяют особый участок наилучшего видения – желтое пятно (имеются каротиноиды).

В области желтого пятна отсутствуют кровеносные сосуды. В его центре находится так называемая центральная ямка, которая содержит колбочки.

Она является местом наилучшего видения глаза. По мере удаления от центральной ямки количество колбочек уменьшается, а палочек увеличивается

В сетчатке различают 10 слоев.

Рассмотрим основные слои: наружный - фоторецепторный(слой палочек и колбочек);

пигментный, самый внутренний, плотно примыкающий непосредственно к сосудистой оболочке;

слой биполярных и ганглиозных (аксоны составляют зрительный нерв) клеток. Над слоем ганглиозных клеток находятся их нервные волокна, которые, собираясь вместе, образуют зрительный нерв.

Световые лучи проходят через все эти слои.

Восприятие света осуществляется с участием фоторецепторов, которые относятся ко вторичночувствующим рецепторам. Это означает, что они представляют собой специализированные клетки, передающие информацию о квантах света на нейроны сетчатки, вначале на биполярные нейроны, затем на ганглиозные клетки, информация затем поступает на нейроны подкорковых (таламус и передние бугры четверохолмия) и корковые центры (первичное проекционное поле 17, вторичные проекционные поля 18 19) зрения. Кроме того, в процессах передачи и переработке информации в сетчатке участвуют горизонтальные и амокриновые клетки.

Все нейроны сетчатки образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому ее называют частью мозга, вынесенной на периферию.

Рецепторный отдел зрительного анализатора состоит из фоторецепторных клеток: палочек и колбочек. В сетчатке каждого глаза человека находится 6-7 млн. колбочек и 110-125 млн. палочек. Они распределены в сетчатке неравномерно.

Центральная ямка сетчатки содержит только колбочки. По направлению от центра к периферии сетчатки их число уменьшается, а число палочек возрастает. Колбочковый аппарат сетчатки функционирует в условиях больших освещенностей, они обеспечивают дневное и цветовое зрение; палочковый аппарат ответственен за сумеречное зрение. Колбочки воспринимают цвет, палочки – свет.

В фоторецепторных клетках содержатся светочувствительные пигменты: в палочках – родопсин, в колбочках – йодопсин.

Поражение колбочек вызывает светобоязнь: человек видит при слабом свете, но слепнет при ярком. Отсутствие одного из видов колбочек приводит к нарушению цветоощущения, т.е к дальтонизму. Нарушение функции палочек, возникающее при недостатке в пище витамина А вызывает расстройства сумеречного зрения- куриную слепоту: человек слепнет в сумерках, но днем видит хорошо.

Совокупность фоторецепторов, посылающих свои сигналы к одной ганглиозной клетке, образует ее рецептивное поле.

Цветовое зрение – способность системы зрения реагировать на изменение длины световой волны с формированием цветоощущения.

Цвет воспринимается при действии света на центральную ямку сетчатки, где расположены исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становится хуже. Периферия сетчатки, где находятся палочки, не воспринимает цвет. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет. Поле зрения – это пространство, которое видит один глаз при неподвижном взоре.

Нейроны сетчатки.

Фоторецепторы сетчатки синаптически связаны с биполярными нейронами.

Биполярные нейроны – первый нейрон проводникового отдела зрительного анализатора. При действии света уменьшается выделение медиатора (глутамат) из пресинаптического окончания фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиозные клетки,аксоны которых являются волокнами зрительного нерва. Передача сигнала с фоторецепторов на биполярный нейрон, так и от него на ганглиозную клетку происходит безимпульсным путем. Биполярный нейрон не генерирует импульсов, в виду предельно малого расстояния, на который он передает сигнал.

Аксоны ганглиозных клеток образуют зрительный нерв. Импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке.

Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют ее рецептивное поле этой клетки.

Т.О. каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. В центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной карликовой биполярной клеткой, с которой соединена одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, резко уменьшает световую чувствительность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные) и между биполярными и ганглиозными клетками (амакриновые клетки). Горизонтальные(звездчатые) и амакринные клетки играют важную роль в процессах анализа и синтеза в нейронах сетчатки. На одну ганглиозную клетку конвергируют до сотни биполярных клеток и рецепторов.

ИЗ сетчатки (биполярные клетки предают сигнализацию на ганглиозные клетки сетчатки, аксоны которых идут в составе правого и левого зрительных нервов) зрительная информация по волокнам зрительного нерва (2-ая пара черепных нервов) устремляется в мозг. Зрительные нервы от каждого глаза встречаются у основания мозга, где формируется их частичный перекрест или хиазма. Здесь часть волокон каждого зрительного нерва переходит на противоположную сторону от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое полушарие мозга информацией от обоих глаз. В затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие - от левых половин сетчаток.

После зрительного перекреста зрительные нервы называю ЗРИТЕЛЬНЫМИ ТРАКТАМИ. Они проецируются в ряд мозговых структур. В каждом зрительном тракте содержатся нервные волокна, идущие от внутреннего региона сетчатки глаза одноименной стороны и от наружной половины сетчатки другого глаза. После перекреста волокна зрительного тракта направляются к наружным коленчатым телам таламуса, где импульсы переключаются на нейроны, аксоны которых направляются к коре большого мозга в первичную проекционную область зрительной зоны коры(стриарная кора или 17-ое поле по Бродману), затем во вторичную проекционную зону(поле18 и 19, престиарная кора), а в затем – в ассоциативные зоны коры. Корковый отдел зрительного анализатора расположен в затылочной доле (17,18,10-е поля по Бродману). Первичная проекционная область (17-е поле) осуществляет специализированную, но более сложную, чем в сетчатке и в наружных коленчатых телах, переработку информацию. В каждом участке коры сконцентрированы нейроны, которые образуют функциональную колонку. Часть волокон от ганглиозных клеток идут к нейронам верхних бугорков и крыше среднего мозга, в претектальную область и подушку в таламусе (из подушки передается на область 18-ого и 19-ого полей коры).

Претектальная область ответственна за регуляции диаметра зрачка, а передние бугры четверохолмия связаны с глазодвигательными центрами и высшими отделами зрительной системы. Нейроны передних бугров обеспечивают реализацию ориентировачных(сторожевых) зрительных рефлексов. Из передних бугров импульсы идут в ядра глазодвигательного нерва, иннервирующие мышцы глаза, ресничную мышцу и мышцу, суживающую зрачок. Благодаря этому, в ответ на попадание световых волн в глаз зрачок суживается., глазные яблоки поворачиваются в направлении пучка света.

Часть информации от сетчатки по зрительному тракту поступает к супрахиазматическим ядрам гипоталамуса, обеспечивая реализацию околосуточных биоритмов.

Цветовое зрение.

Большинство людей способно различать основные цвета и их многочисленные оттенки. Это объясняется воздействием на фоторецепторы различных по длине волны электромагнитных колебаний.

Цветовое зрение – способность зрительного анализатора воспринимать световые волны различной длины. Цвет воспринимается при действии света на центральную ямку сетчатки, где расположены исключительно колбочки(воспринимают в синем, зеленом, красном диапазоне). По мере удаления от центра сетчатки восприятие цвета становится хуже. Периферия сетчатки,где находятся палочки не воспринимает цвет. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет.

Человек, имеющий все три вида колбочек(красный, зеленый, синий), т.е. трихромат, обладает нормальным цветовосприятием. Отсутствие одного из типа колбочек приводит к нарушению цветоощущения. В сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения, мы не различаем цвет.

Дальтонизм выражается в выпадении восприятия одного из компонентов трехцветного зрения. Возникновение его связывают с отсутствием определенных генов в половой непарной у мужчин Х хромосоме. (таблицы Рабкина- полихроматические таблицы). Ахромазия – это полная цветовая слепота, возникающая вследствие поражения колбочкового аппарата сетчатки. При этом все предметы видятся человеком лишь в разных оттенка серого цвета.

Протанопия «краснослепые»- не воспринимают красного цвета, сине-голубые лучи кажутся бесцветными. Дейтеранопия – «зеленослепые» - не отличают зеленых цветов от темно- красных и голубых; Тртанопия –фиолетовослепые, не воспринимают синего и фиолетового цвета.

Бинокулярное зрение – это одновременное видение предметов двумя глазами, которое дает более выраженное ощущение глубины пространства по сравнению с монокулярным зрением (т.е. зрением одним глазом). Обусловлено симметричным расположением глаз.

Аккомодация – настройка оптического аппарата глаза на определенное расстояние, в результате которой изображение предмета фокусируется на сетчатке.

Аккомодация – приспособление глаза к ясному видению объектов, удаленных на разном расстоянии от глаза. Именно это свойство глаза позволяет одинаково хорошо видеть предметы, находящиеся вблизи или вдали. У человека аккомодация осуществляется за счет изменения кривизны хрусталика - при рассмотрении далеких предметов кривизна уменьшается до минимума, а при рассмотрении близко расположенных предметов – его кривизна увеличивается (выпуклый).

Аномалии рефракции.

Отсутствие необходимого фокусирование изображения на сетчатке глаза мешает нормальному видению.

Миопия (близорукость) - это вид нарушения рефракции, при котором лучи от предмета после прохождения через светопреломляющий аппарат фокусируются не на сетчатке, а впереди ней - в стекловидном теле, т.е. главный фокус находится перед сетчаткой вследствие увеличения продольной оси. Продольная ось глаза слишком длинная. В этом случае у человека нарушено восприятие далеких предметов. Коррекция такого нарушения проводится с помощью с двояковогнутыми линзами, которые отодвинут сфокусированные изображение на сетчатке.

При гиперметропии (дальнозоркость) - лучи от далеко расположенных предметов в силу слабой преломляющей способности глаза или малой длины глазного яблока фокусируются за сетчаткой, т.е. главный фокус находится за сетчаткой вследствие короткой продольной оси глаза. В дальнозорком глазу продольная ось глаза укорочена. Этот недостаток рефракции может быть компенсирован увеличением выпуклости хрусталика. Поэтому дальнозоркий человек напрягает аккомодационную мышцу, рассматривая не только близкие, но и далекие объекты.

Астигматизм (неодинаковое преломление лучей в разных направлениях) – это такой вид нарушения рефракции, при котором отсутствует возможность схождения лучей в одной точке сетчатки, вследствие различной кривизны роговицы на разных ее участках (в различных плоскостях), в результате чего главный фокус в одном месте может попадать на сетчатку, в другом находиться перед ней или за ней, что искажает воспринимаемое изображение.

Дефекты оптической системы глаза компенсируются в совмещении главного фокуса преломляющих сред глаза сетчаткой.

В клинической практике используют очковые линзы: при миопии – двояковогнутые (рассеивающие) линзы; при гиперметропии – двояковыпуклые (собирательные) линзы; при астигматизме – цилиндрические линзы с различной преломляющей силой в разных их участках.

Аберрация – искажение изображения на сетчатке, вызванное особенностями преломляющих свойств глаза для световых волн различной длины (дифракционная, сферическая, хроматическая).

Сферическая аберрация - неодинаковое преломление лучей в центральном и периферическом участках роговицы и хрусталика, что введет к рассеиванию лучей и резкому изображению.

Острота зрения – способность видеть две максимально близко расположенные точки как различные, т.е. наименьший угол зрения, при котором глаз способен видеть две точки отдельно. Угол между падениями лучей = 1(секунда). В практической медицине остроту зрения обозначают в относительных единицах. При нормальном зрении острота зрение = 1. Острота зрения зависит от количества возбудимых клеток.

 

Слуховой анализатор

- это совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания. Звуковые сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга.

У человека слуховой анализатор представлен периферическим отделом (наружное, среднее, внутреннее ухо), проводниковым отделом, корковым (височная слуховая кора)

Бинауральный слух – способность слышать одновременно двумя ушами и определять локализацию источника звука.

Звук – колебательные движения частиц упругих тел, распространяющиеся в виде волн в самых различных средах включая, воздушную, и воспринимающиеся ухом. Звуковые волны характеризуются частотой и амплитудой. Частота звуковых волн определяет высоту звука. Ухо человека различает звуковые волны с частотой от 20 до 20000 Гц. Звуковые волны, имеющие гармонические колебания называют тоном. Звук, состоящий из не связанных между собой частот – шум. При большой частоте звуковых волн тон высокий, при малой – низкий.

Звуки разговорной речи имеют частоту 200- 1000Гц. Малые частоты составляют басовый певческий голос, высокие частоты – сопрано.

Единицей измерения громкости звука является децибел. Гармоническое сочетание звуковых волн формирует –тембр звука. По тембру можно различать звуки одинаковой высоты и громкости, на чем основано узнавание людей по голосу.

Периферическая часть у человека морфологически объединена с периферической частью вестибулярного анализатора и поэтому называют орган слуха и равновесия.

Наружное ухо представляет собой звукоулавливающий аппарат. Оно состоит из ушной раковины и наружного слухового прохода, который отделяется барабанной перепонкой от среднего.

Ушная раковина обеспечивает улавливание звуков, их концентрацию в направлении наружного слухового прохода и усиление их интенсивности.

Наружный слуховой проход проводит звуковые колебания к барабанной перепонке, отделяющая наружное ухо от барабанной полости или среднего уха. Колеблется при действии звуковых волн.

Наружный слуховой проход и среднее ухо разделены барабанной перепонкой.

С физиологической точки зрения – слаборастяжимая мембрана. Назначение его- передавать дошедшие до нее по наружному слуховому проходу звуковые волны, точно воспроизводя их силу и частоту колебаний.

Среднее ухо

состоит из барабанной полости (заполненная воздухом), в которой расположены три слуховые косточки: молоточек, наковальня, стремечко.

Рукоятка молоточка сращена с барабанной перепонкой, другая его часть имеет сочленение с наковальней, которая воздействует на стремечко, передающее колебание на мембрану овального окна. К стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Площадь овального окна в 22 раз меньше барабанной перепонки, во столько же раз усиливает его давление на мембрану овального окна. Даже слабые волны, действующие на барабанную перепонку,способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям овального окна жидкости в улитке.

В полости среднего уха давление равно атмосферному. Это достигается благодаря наличию евстахиевой трубы, соединяющей барабанную полость с глоткой. При глотании евстахиева труба открывается, и давление в среднем ухе уравнивается с атмосферным. Это важно при резком перепаде давления- при взлете и посадке самолета, в скоростном лифте и т. Своевременное раскрытие евстахиевой трубы способствует выравниванию давления, снимает неприятные ощущения и предупреждает разрыв барабанной перепонки.

Внутреннее ухо.

Содержит рецепторный аппарат 2-х анализаторов: вестибулярного (преддверие и полукружные каналы) и слухового, к которому относится улитка с кортиевым органом. Внутреннее ухо расположено в пирамиде височной кости.

Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. Улитка - спирально закрученный костный канал, имеющий 2,5 завитка, почти до самого конца улитки, костный канал разделен 2-мя перепонками: более тонкой – преддверной (вестибулярной) мембраной (мембраной Рейснера) и плотной и упругой - основной мембраной. На вершине улитки обе эти мембраны соединяются, и в них имеются овальное отверстие улитки – геликотрема. Вестибулярная и основная мембрана разделяют костный канал улитки на 3 хода: верхний, средний, нижний. Верхний канал улитки соединяется с нижним каналом (барабанная лестница) Верхний и нижний каналы улитки заполнены перилимфой. Между ними находится средний канал, полость этого канала не сообщается с полостью других каналов и заполнена эндолимфой. Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат – спиральный (кортиев) орган, содержащий рецепторные волосковые клетки. Над волосками рецепторных клеток располагается текториальная мембрана. При прикосновении к ней (в результате колебаний основной мембраны)волоски деформируются и это приводит к возникновению рецепторного потенциала. Эти клетки трансформируют механические колебания в электрические потенциалы.

Звуковые волны вызывают колебания барабанной перепонки, которые через систему слуховых косточек среднего уха и мембрану овального окна передаются на перилимфу вестибулярной и барабанной лестниц. Это приводит к колебаниям эндолимфы и определенных участков основной мембраны. Звуки высокой частоты вызывают колебание мембраны, расположенных ближе к основанию улитки. В рецепторных клетках возникает рецепторный потенциал, под влиянием которого в окончаниях волокон слухового нерва генерируются ПД, передающиеся далее по проводящим путям.

Т.о.восприятие звука осуществляется с участием фонорецепторов. Их возбуждение под влиянием звуковой волны приводит к генерации рецепторного потенциала, который вызывает возбуждение дендритов биполярного нейрона спирального ганглия.

Камертональная аудиометрия.

(проба Ринне и проба Вебера) предназначена для сравнительной оценки воздушной и костной проводимости звука путем восприятия звучащего камертона. У здорового человека воздушная проводимость выше костной.

В пробе Ринне ножку звучащего камертона устанавливают на сосцевидном отростке. По окончанию восприятия звука бранши камертона подносят к звуковому проходу – здоровый человек продолжает воспринимать звучание камерт она. У человека при использовании С128время воздушной проводимости 75с,а костной-35.

Обонятельный анализатор.

Обонятельный анализатор позволяет определять в присутствии в воздухе пахучих веществ. Он способствует ориентации организма в окружающей среде и совместно с другими анализаторами формированию ряда сложных форм поведение (пищевого, оборонительного, полового).

Поверхность слизистой носа увеличен за счет носовых раковин- гребней, выступающих с боков в просвет носовой полости. Обонятельная область, содержащая большинство сенсорных клеток, ограничена здесь верхней носовой раковиной.

Рецепторы обонятельной системы расположены в области верхних носовых ходов. Обонятельный эпителий находится в стороне от главного дыхательного пути, имеет толщину 100-150мкм и содержит рецепторные клетки, расположенные между опорными клетками. На поверхности каждой обонятельной клетки имеется сферическое утолщение – обонятельная булава, из которой выступает по 6-12 тончайших волосков (ресничек), в мембранах которых находятся специфические белки – рецепторы. Эти реснички не способны активно двигаться, т.к. погружены в слой слизи, покрывающий обонятельный эпителий. Пахучие вещества, приносимые вдыхаемым воздухом, вступают контакт с их мембраной, что приводит к формированию рецепторного потенциала в дендрите обонятельного нейрона, а затем возникновению в нем ПД. Обонятельные реснички погружены в жидкую среду, вырабатываемую обонятельными (боуменовы) железами. Во всей слизистой находятся еще свободные окончания тройничного нерва, некоторые реагируют на запах.

В глотке обонятельные стимулы способны возбуждать волокна языкоглоточного и блуждающего нервов.

Обонятельный рецептор – это первичная биполярная сенсорная клетка, от которой отходят два отростка: сверху- дендрит, несущий реснички, а от основания отходит безмиелиновый аксон. Аксоны рецепторов образуют обонятельный нерв, который пронизывает основание черепа и вступает в обонятельную луковицу (в коре вентральной поверхности лобной доли). Обонятельные клетки постоянно обновляются. Продолжительность их жизни – 2 мес. Запах воспринимается только тогда, когда слизистая носа увлажнена. Импульсация передается по обонятельному нерву в обонятельный луковицы (первичный центр), где уже формируется образ.

Молекулы пахучих веществ попадают в слизь, вырабатываемые обонятельными железами, с постоянным током воздуха или из ротовой полости во время еды. Принюхивание ускоряет приток пахучих веществ к слизи. В слизи молекулы пахучих веществ на короткое время связываются нерецепторными белками. Некоторые молекулы достигают ресничек обонятельного рецептора и взаимодействуют с находящимися в них обонятельным рецепторным белком. Обонятельный белок активирует ГТФ – связывающий белок, и тот в свою очередь активирует фермент аденилатциклазу, синтезирующую ц АМФ. Повышение в цитоплазме концентрации ц АМФ вызывает открывание в плазматической мембране рецепторной клетки натриевых каналов и как следствие -генерацию деполяризационного рецепторного потенциала. Это приводит к импульсному разряду в аксоне (волокно обонятельного нерва).

Каждая рецепторная клетка способна ответить физиологическим возбуждением на характерный для нее спектр пахучих веществ.

Каждая обонятельная клетка имеет только один тип мембранного рецепторного белка. Сам же этот белок способен связывать множество пахучих молекул.

Каждый обонятельный рецептор отвечает не на один, а на многие пахучие вещества, отдавая «предпочтение» некоторым из них.

Афферентные волокна не переключаются в таламусе и не переходят на противоположную сторону мозга.

Один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения. При низких концентрациях пахучего вещества человек лишь ощущает запах и не может определить его качество (порог обнаружения). При более высоких концентрациях запах вещества становится опознаваемым и человек может его определить (порог опознание). При длительном действии запахового стимула ощущение ослабевает, наступает адаптация. В обонятельном восприятии у человека присутствует эмоциональный компонент. Запах может вызвать ощущения удовольствия или отвращения и при этом меняется состояние человека.

Вкусовой анализатор.

Вкусовой анализатор обеспечивает возникновение вкусовых ощущений. Его главное назначение заключается как в оценке вкусовых свойств пищи, так и в определении ее пригодности к употреблению, а так же в формировании аппетита, влияют на процесс пищеварения. Они влияют на секрецию пищеварительных желез.

В формировании вкусовых ощущений важная роль принадлежит хеморецепции. Вкусовые рецепторы несут информацию о характере и концентрации веществ, поступающих в рот.

Рецепторы вкуса (вкусовые почки) расположены на языке, задней стенке глотки, мягком небе, миндалинах и надгортаннике. Больше всего их на кончике, краях и задней части языка. Вкусовая почка имеет колбовидную форму. Вкусовая почка не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору. Железы, расположенные между сосочками, выделяют омывающую вкусовые почки жидкость.

У взрослых сенсорные вкусовые клетки расположены на поверхности языка. Вкусовые клетки – наиболее коротко живущие эпителиальные клетки организма: в среднем через 250 ч старая клетка сменяется молодой. В узкой части вкусовой почки находятся микроворсинки рецепторных клеток, на которых расположены хеморецепторы. Они контактируют с жидким содержанием ротоглотки через небольшое отверстие в слизистой оболочке, называемое вкусовой порой.

Вкусовые клетки генерируют при стимуляции рецепторный потенциал. Это возбуждение синаптически передается афферентным волокнам ЧМ-ых нервов, которые проводят его в мозг в виде импульсов.

Афферентные волокна (биполярные нейроны), проводящие возбуждение от вкусовых рецепторов, представлены нервами – барабанной струной (ветвь лицевого нерва,VII),который иннервирует переднюю и боковые части языка, также языкоглоточным нервом, иннервирующим заднюю часть языка. Афферентные вкусовые волокна объединяются в солитарный тракт, который заканчивается в соответствующем ядре продолговатого мозга.

В нем волокна образуют синапсы нейронами второго порядка, аксоны которых направляются к вентральному таламусу (здесь расположены третьи нейроны проводникового отдела вкусового анализатора), а так же центрам слюновыделения, жевание, глотание в стволе мозга. Четвертые нейроны вкусового анализатора локализуются в коре большого мозга в нижней части соматосенсорной зоны в области представительства языка (постцентральной извилине коры большого мозга). В результате обработки информации на перечисленных уровнях число нейронов с высокоспецифичной вкусовой чувствительностью возрастает. Ряд корковых клеток реагируют только на вещества с одним вкусовым качеством. Расположение таких нейронов указывает на высокую степень пространственной организации вкусового чувства.

Большинство этих нейронов мультиполярны. Они реагируют на вкусовые, температурные, механические и ноцицептивные раздражители т.е. реагируют не только на вкус, но и на температурную и механическую стимуляцию языка.

 

Температу



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 1822; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.72.161 (0.013 с.)