Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Правило Лапласа равновозможностиСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
ХАРАКТЕРИСТИКИ ВЕРОЯТНОСТНЫХ ФИНАНСОВЫХ ОПЕРАЦИЙ Финансовая операция называется вероятностной, если существует вероятность каждого ее исхода. Прибыль такой операции – разность конечной и начальной денежных ее оценок – является случайной величиной. Для такой операции удается ввести количественную оценку риска, согласующуюся с нашей интуицией.
Количественная оценка риска В предыдущей главе дано определение рискованной операции, как имеющей, по крайней мере, два исхода, не равноценных в системе предпочтений ЛПР. В контексте данной главы вместо ЛПР можно, употреблять также термин «инвестор» или какой-либо подобный, отражающий заинтересованность проводящего операцию (возможно, пассивно) в ее успехе. При исследовании риска операции встречаемся с фундаментальным утверждением. Утверждение. Количественная оценка риска операции возможна только при вероятностной характеристике множества исходов операции. Пример 1. Рассмотрим две вероятностные операции:
Несомненно, риск первой операции меньше риска второй операции. Что же касается того, какую операцию выберет ЛПР, это зависит от его склонности к риску (подобные вопросы подробно рассмотрены в дополнении к ч. 2).
Риск отдельной операции Так как мы хотим количественно оценить рискованность операции, а это невозможно сделать без вероятностной характеристики операции, то ее исходам припишем вероятности и оценим каждый исход доходом, который ЛПР получает при этом исходе. В итоге получим случайную величину Q, которую естественно назвать случайным доходом операции, или просто случайным доходом. Пока ограничимся дискретной случайной величиной (д.с.в.):
где q j - доход, а р j – вероятность этого дохода. Операцию и представляющую ее случайную величину – случайный доход будем отождествлять при необходимости, выбирая из этих двух терминов болееудобный в конкретной ситуации. Теперь можно применить аппарат теории вероятностей и найти следующие характеристики операции. Средний ожидаемый доход – математическое ожидание с.в. Q, т.е. М [ Q ]= q 1 p 1+…+ q n p n, обозначается еще m Q, Q, употребляется также название эффективность операции. Дисперсия операции - дисперсия с.в. Q, т.е. D [ Q ]= М [(Q - m Q)2], обозначается также D Q. Среднее квадратическое отклонение с.в. Q, т.е. [ Q ]=√(D [ E ]), обозначается также σ Q. Отметим, что средний ожидаемый доход, или эффективность операции, как и среднее квадратическое отклонение, измеряется в тех же единицах, что и доход. Напомним фундаментальный смысл математического ожидания с.в. Среднее арифметическое значений, принятых с.в. в длинной серии опытов, примерно равно ее математическому ожиданию. Все более признанным становится оценка рискованности всей операции посредством среднего квадратического отклонения случайной величины дохода Q, т.е. посредством σ Q. В данной книге это основная количественная оценка. Итак, риском операции называется число σ Q – среднее квадратическое отклонение случайного дохода операции Q. Обозначается также r Q. Пример 2. Найдем риски первой и второй операций из примера 1:
Сначала вычисляем математическое ожидание с.в. Q 1: т 1= – 5*0,01+25*0,99=24,7. Теперь вычислим дисперсию по формуле D 1 =M [ Q 12]- m 12. Имеем М [ Q 12] = 25*0,01+625*0,99=619. Значит, D 1=619 – (24,7)2=8,91 и окончательно r 1=2,98.
Аналогичные вычисления для второй операции дают m 2=20; r 2=5. Как и «полагала интуиция», первая операция менее рискованная. Предлагаемая количественная оценка риска вполне согласуется с интуитивным пониманием риска как степени разбросанности исходов операции – ведь дисперсия и среднее квадратическое отклонение (квадратный корень из дисперсии) и суть меры такой разбросанности.
Другие измерители риска. По нашему мнению, среднее квадратическое отклонение является наилучшим измерителем риска отдельной операции. В гл. 1 рассмотрены классическая схема принятия решений в условиях неопределенности и оценки риска в этой схеме. Полезно познакомиться: с другими измерителями риска. В большинстве случаев эти измерители – просто вероятности нежелательных событий.
|
||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 743; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.167.11 (0.011 с.) |