Смешанное произведение трех векторов. Его выражение через координаты векторов в ортонормированном базисе. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Смешанное произведение трех векторов. Его выражение через координаты векторов в ортонормированном базисе.



е1,е2,е3 единичные векторы

а={α1,α2,α3}, b={β1,β2,β3}, c={µ1,µ2,µ3}

(a,b,c)=(α1*e1+ α2*e2+ α3*e3+ β1*e1+ β2*e2+ β3*e3+ µ1*e1+ µ2*e2+ µ3*e3)=

Смешанное произведение в правой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и :

Смешанное произведение в левой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и , взятому со знаком "минус":

 

11.Деление отрезка в данном отношении.

Пусть на плоскости даны две произвольные различные точки, из которых одна считается первой, другая – второй. Обозначим их в заданном порядке через М1 и М2. Проведем через данные точки прямую j и назначим на ней положительное направление, тем самым мы сделаем ее осью. Пусть, далее, М – еще одна точка оси j, расположенная на ней как угодно и исключением только одного случая: она не должна совпадать с точкой М2. Число µ=М1М/ММ2, где М1М и ММ2 суть величины направленных отрезков М1М и ММ2 оси j, называется отношением, в котором точка М делит направленный отрезок М1М2. Замечание1.Число µ не зависит от того, как выбрано положительное направление на прямой j, определяемой точками М1 и М2.

Замечание 2. Число µ не зависит и от выбора масштаба для измерения длин. В самом деле, при изменении масштаба величины отрезков на оси М1М2 умножатся на одно и то же число и следовательно отношение М1М/ММ2 не изменится.

Замечание 3. Если не исключать возможности совпадения точки М с точкой М2, то в том случае, когда М совпадет с М2, равенство не определяет никакого числа.

 

12. Различные виды уравнения прямой на плоскости.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

• C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

• А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

• В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

• В = С = 0, А ≠0 – прямая совпадает с осью Оу

• А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой по точке и вектору нормали

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой, заданной уравнением Ах + Ву + С = 0.

Уравнение прямой, проходящей через две точки

Пусть в пространстве заданы две точки M 1 (x 1, y 1, z 1) и M2 (x 2, y 2, z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.На плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х2 и х = х 1, если х 1 = х2.

Дробь = k называется угловым коэффициентом прямой.

Уравнение прямой по точке и угловому коэффициенту

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентомk.

Уравнение прямой по точке и направляющему вектору

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор 1, α2), компоненты которого удовлетворяют условию А α1 + В α2 = 0 называется направляющим вектором прямой

Ах + Ву + С = 0.

 

 

13. Нормальное уравнение прямой на плоскости.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

• C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

• А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

• В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

• В = С = 0, А ≠0 – прямая совпадает с осью Оу

• А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

 

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем, то получим

 

xcosφ + ysinφ - p = 0 –

нормальное уравнение прямой. Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

14. Угол межу двумя прямыми на плоскости. Условия параллельности и перпендикулярности двух прямых.

Определение. Если заданы две прямые y = k1 x + b1, y = k 2x + b2, то острый угол между этими прямыми будет определяться как

 

.

Две прямые параллельны, если k1 = k2. Две прямые перпендикулярны, если k1 = -1/ k2.

Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В1 у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = λА, В1 = λВ. Если еще и С1 = λС, то прямые совпадают. Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.

Если уравнения прямой заданы в общем виде

A 1 x + B 1 y + C 1 = 0,

A 2 x + B 2 y + C 2 = 0, (6)

угол между ними определяется по формуле

(7)

Условия параллельности двух прямых:

а) Если прямые заданы уравнениями (4) с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:

k 1 = k 2. (8)

б) Для случая, когда прямые заданы уравнениями в общем виде (6), необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.

(9)

Условия перпендикулярности двух прямых:

а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.

(10)

 

 

15. Расстояние от точки до прямой на плоскости.

Теорема. Если задана точка М(х0, у0), то расстояние до прямой Ах + Ву + С =0 определяется как

Доказательство. Пусть точка М 11, у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1: (1)

Координаты x1 и у1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y0) + Ax0 + By0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 475; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.44.108 (0.014 с.)