Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Б2. Электрическое поле. Напряжённость поля. Принцип суперпозиции полей. Силовые линии поля. Поле диполя.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела. Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд. При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит: результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил. Если в данной точке пространства различные электрически заряженные частицы 1, 2, 3... и т.д. создают электрические поля с напряженностью Е1, Е2, Е3... и т.д., то результирующая напряженность в данной точке поля равна геометрической сумме напряженностей. Электрическое поле наглядно изображается с помощью силовых линий. Силовой линией электрического поля называется линия, в каждой точке которой касательная совпадает с вектором напряженности поля. Силовые линии проводятся с такой густотой, чтобы число линий, пронизывающих воображаемую площадку 1м2, перпендикулярную полю, равнялось величине напряженности поля в данном месте. Тогда по изображению электрического поля можно судить не только о направлении, но и о величине напряженности поля. Электрическое поле называется однородным, если во всех его точках напряженность Е одинакова. В противном случае поле называется неоднородным. При положительном заряде, образующем поле, вектор напряженности направлен вдоль радиуса от заряда, при отрицательном - вдоль радиуса по направлению к заряду. Исходя из положительного заряда (или входя в отрицательный заряд) силовые линии теоретически простираются до бесконечности. . Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля: Как следует из формул напряженность поля точечного заряда в вакууме Векторная сумма -это принцип суперпозиции.Для того чтобы задать поле надо в каждой точке пространства задать направление вектора E и его модуль. Силовая линия -это мысленная кривая.проведенная т. о.,чтобы в каждой точке её вектор E был бы касательной Напряж.данной точки будет равна 1.Если 3,то 3. Договоримся,что из поожительных выходят,а в отрицательный заряд входят
Силовая линия.Выбрали площадку ds, n-нормаль,тогда потоком вектора e будет наз-ся величина -скалярное произведение. Имеется конечная площадка ds,тогда поток Если поверхность замкнутая,то поток через замкнутую поверхность Замкнт. Поверхность разделяет просторан. На внутреннею часть и на внешнюю,которые между собой не прикасаются.замкн. находится,тогда поток вектора E через заданную поверхность Имеется несколько зарядов. Теорема Е —напряженность результирующего поля, а Е i — напряженность поля, создаваемого зарядом Qi. Подставляя последние выражения в, получаем Формула выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.Принцип суперпозиции позволяет рассчитать электростатические поля любой системы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов. Электрический диполь — система двух равных по модулю разноименных точечных зарядов (+Q,–Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называется плечом диполя 1. Вектор совпадающий по направлению с плечом диполя и равный произведению заряда |Q| на плечо l, называется электрическим моментом диполя или дипольным моментом. Согласно принципу суперпозиции напряженность Е поля диполя в произвольной точке где Е+ и Е– — напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.
Б3.Поток вектора напряжённости электрического поля. Теорема Остроградского-Гаусса. Примеры. Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности Ne.
Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).
Поток напряженности через такую элементарную площадку будет равен по определению где -a угол между силовой линией и нормалью n к площадке dS; dS - проекция площадки dS на плоскость, перпендикулярную силовым линиям. Тогда поток напряженности поля через всю поверхность площадки S будет равен т.к то где - En проекция вектора E на нормаль и к поверхности dS.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 5331; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.93.34 (0.008 с.) |