Эксплуатация электрических подстанций и распределительных устройств 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Эксплуатация электрических подстанций и распределительных устройств



В. В. Красник

Эксплуатация электрических подстанций и распределительных устройств

 

 

 

«Эксплуатация электрических подстанций и распределительных устройств / Красник В. В.»: ЭНАС; Москва; 2011

ISBN 978-5-4248-0005-4

Аннотация

 

Приведены общие требования к эксплуатации электрических подстанций и распределительных устройств различных уровней напряжения. Рассмотрены вопросы технического обслуживания оборудования подстанций и распределительных устройств, особенности эксплуатации отдельных видов оборудования, порядок и последовательность выполнения оперативных переключений. Даны рекомендации по предупреждению и устранению отказов оборудования и аварийных ситуаций в электрических сетях, по действиям персонала при аварийном отключении оборудования подстанций. Представлен перечень необходимой оперативной документации; изложены принципы организации работы с персоналом энергетических предприятий.

Для административно-технического, оперативного и оперативно-ремонтного персонала энергопредприятий, связанного с организацией и выполнением работ по техническому обслуживанию, ремонту, наладке и испытанию оборудования электрических подстанций и распределительных устройств.

 

В. В. Красник

Эксплуатация электрических подстанций и распределительных устройств

 

Введение

 

Состояние отечественной электроэнергетики в последние 15 лет характеризуется стремительным ростом количества и мощности потребителей электроэнергии, который значительно опережает замедленное развитие генерирующего оборудования и электрических сетей.

В условиях нехватки генерирующих мощностей, наличия изношенного оборудования электростанций и подстанций, плачевного состояния магистральных и распределительных электросетей электросетевые компании фактически ведут борьбу за выживание. В ряде случаев объекты электросетевого хозяйства просто становятся бесхозными (например, в зоне ответственности ОАО «МРСК Северо-Запада» в 2009 г. выявлено 1656 таких объектов — воздушных и кабельных линий электропередачи 0,4 и 10 кВ, а также комплектных трансформаторных подстанций). Необходимого запаса в 10–15 % мощностей для устойчивой работы энергосистем уже нет, а существующий минимальный резерв может быть исчерпан в ближайшие годы («Энергетика и промышленность России». 2006. № 6, 2009. № 19).

В период экстенсивного развития электрических сетей, начатого в 60-е годы прошлого века, главное внимание уделялось упрощенным решениям, таким как ввод однотрансформаторных подстанций, организация их одностороннего питания, сооружение ВЛ на механически непрочных деревянных опорах, применение упрощенных и ненадежных механических устройств релейной защиты и автоматики и т. д. В результате в 80-е годы была достигнута высокая плотность электрических сетей с упрощенными, недостаточно надежными элементами и экономически все менее эффективными и морально устаревшими основными фондами.

С другой стороны, если ранее (до создания РАО «ЕЭС России») при проектировании электрических сетей и решении вопросов надежности и экономичности их работы за основу брались технические данные об установленной (трансформаторной) мощности и единовременных нагрузках источников и приемников электроэнергии, длине линии электропередачи, объемах и потерях вырабатываемой и потребляемой электроэнергии, износе оборудования и т. п., то в период деятельности холдинга основными факторами стали размеры инвестиционных вливаний в энергетику, биржевые котировки акций энергопредприятий и другие чисто коммерческие показатели.

В настоящее время стало очевидным, что такой подход к решению проблем в электроэнергетической отрасли не только себя не оправдал, но, помимо все большего износа энергетического оборудования, привел к широкомасштабным авариям, массовым хищениям электроэнергии, введению несуразно большой платы за технологическое присоединение к электрическим сетям и к ряду других негативных явлений.

Чем больше потребителей электрической энергии подключаются к сетям энергоснабжающих организаций, тем больше увеличивается дефицит мощности генерирующего оборудования. В условиях такого дефицита мощности присоединение потребителей к электросетям возможно только при строительстве новых или модернизации существующих генерирующих источников. Для этого нужны огромные средства. Поэтому с целью ликвидации дефицита мощности для потребителей электрической энергии была введена непомерно высокая плата за подключение к электросетям. Это, в свою очередь, вызвало масштабный рост хищений электроэнергии и, соответственно, привело к очередному витку увеличения дефицита мощности из-за неучтенных нагрузок.

Высокий физический и моральный износ электрооборудования, отсутствие новых научно-исследовательских и конструкторских разработок в области оборудования электростанций, подстанций и электрических сетей, в том числе средств релейной защиты, автоматики и микропроцессорной техники вызывают справедливые нарекания со стороны обслуживающего оперативного и оперативно-ремонтного персонала энергетических предприятий.

В этих условиях особую роль приобретают вопросы улучшения организации и повышения качества технического обслуживания и ремонта энергетического оборудования, которым и посвящена настоящая книга.

Большой вклад в систематизацию вопросов эксплуатации оборудования электрических подстанций внесли ведущие отечественные специалисты в этой области А. А. Филатов, А. В. Белецкий и другие.

Книги А. А. Филатова [21–24] до сих пор являются настольным учебно-производственным пособием для оперативного и оперативно-ремонтного персонала подстанций и распределительных устройств высокого напряжения. Именно поэтому при формировании структуры и содержания данной книги использованы материалы указанных выше трудов А. А. Филатова. Вместе с тем, с учетом требований новых и переработанных нормативно-технических документов в области технического обслуживания и ремонта энергетического оборудования, выпущенных в последние годы (в частности, правил технической эксплуатации, правил устройства электроустановок и др.), в книгу включен обширный дополнительный материал, составивший ряд новых глав и разделов.

Книга состоит из введения, тринадцати глав, перечня принятых сокращений и списка литературы.

В главе 1 приведены общие требования к организации работ по техническому обслуживанию электрических подстанций и распределительных устройств; рассмотрены структура и система организации электроэнергетической отрасли, структура оперативно-диспетчерского управления; дана классификация понятий и описана нормативно-техническая документация по эксплуатации электрических подстанций и распределительных устройств.

Глава 2 посвящена собственно вопросам эксплуатации оборудования подстанций, главным образом, силовых трансформаторов и автотрансформаторов.

В главах 3–8 рассмотрены особенности технического обслуживания синхронных компенсаторов, масляных и воздушных выключателей, разъединителей, отделителей и короткозамыкателей, измерительных трансформаторов тока и трансформаторов напряжения, конденсаторов связи, разрядников, ограничителей перенапряжения, реакторов и кабелей, элементов распределительных устройств, цепей оперативного тока и устройств релейной защиты и автоматики.

В главе 9 описаны методы и порядок выполнения фазировки в электрических сетях.

В главе 10 изложены порядок и последовательность выполнения оперативных переключений на подстанциях.

Глава 11 посвящена вопросам предупреждения и устранения аварийных ситуаций в электрических сетях, порядку организации работ при ликвидации аварий, анализу причин возникновения аварийных ситуаций, а также действиям персонала при аварийном отключении оборудования подстанций и электрических сетей.

В главе 12 дан перечень необходимой оперативной документации.

В главе 13 изложены принципы организации работы с персоналом энергетических предприятий, регламентированные действующими правилами и нормами.

Книга адресована административно-техническому, оперативному и оперативно-ремонтному персоналу энергетических предприятий, связанному с организацией и выполнением работ по техническому обслуживанию, ремонту, наладке и испытанию оборудования электрических подстанций и распределительных устройств.

 

Глава 1. Общие требования к организации работ по техническому обслуживанию электрических подстанций и распределительных устройств

 

Система охлаждения

 

В процессе работы СК в нем выделяется теплота, обусловленная нагревом обмоток статора и ротора электрическим током, электромагнитными потерями в стали, потерями на вентиляцию и трение. Для нормальной работы СК необходим отвод тепла охлаждающей средой — воздухом или водородом.

В СК применяется так называемая косвенная (поверхностная) система охлаждения, передающая тепло охлаждающему газу внешней поверхностью активных частей машины.

По сравнению с воздухом водородное охлаждение имеет преимущества в связи с особыми свойствами водорода, а именно:

теплопроводность водорода в 7 раз превышает теплопроводность воздуха;

водород легче воздуха в 14,3 раза, что способствует уменьшению вентиляционных потерь почти в 10 раз;

в окружении водорода изоляция работает лучше, так как на нее не оказывает влияние кислород (озон);

уменьшается опасность развития пожара в машине, так как водород не поддерживает горение.

Однако водородное охлаждение более сложно в обслуживании по сравнению с воздушным. Кроме того, водород в соединении с воздухом образует взрывоопасную смесь, в связи с чем машины с водородным охлаждением должны быть газоплотными. Чтобы воздух не попал в корпус машины, в них постоянно должно поддерживаться избыточное давление водорода. Оптимальным для СК средней мощности принято рабочее давление водорода 0,1 МПа (1 кгс/см2). С уменьшением давления мощность СК падает.

Если водород в системе охлаждения заменить воздухом, то допустимая нагрузка СК должна быть не выше 60–70 % его номинальной мощности.

СК серии КСВ имеют замкнутую систему вентиляции. У СК наружной установки газоохладители размещаются вертикально внутри корпуса вблизи торцевых щитов. Они состоят из стальных трубных досок, между которыми проходят латунные трубки. Внутри трубок циркулирует вода, снаружи — охлаждаемый водой газ. Перемещение газа в машине обеспечивается двумя вентиляторами, расположенными по торцам ротора. Вентиляторы прогоняют газ по замкнутому пути: зона торцевых щитов — радиальные вентиляционные каналы в стали статора и лобовые части обмоток статора — камера горячего воздуха — газоохладители. Ротор под действием эффекта самовентиляции охлаждается газом, проходящим по радиальным каналам остова. Из камеры контактных колец охлаждающий газ возвращается в корпус СК через маслогазовый фильтр, очищающий газ от угольной пыли.

Для вытеснения воздуха в СК используется диоксид углерода. Подача диоксида углерода производится через нижний коллектор СК и через нижний газопровод камеры контактных колец. Воздух, как более легкий газ, удаляется из верхних точек этих объемов. Баллоны с диоксидом углерода подсоединяют к коллектору без редукторов. Одновременно разряжают несколько баллонов.

В процессе разрядки баллонов могут замерзнуть вентили на них и на коллекторе из-за того, что расширение диоксида углерода при переходе его из жидкого состояния в газообразное связано с поглощением теплоты. Если скорость истечения диоксида углерода превысит 3 кг/ч, подводимой снаружи теплоты окажется недостаточно и диоксид углерода замерзнет в арматуре и даже в баллонах. Поэтому вентили на баллонах и общий вентиль на коллекторе необходимо периодически закрывать и открывать. Замерзшие баллоны отсоединяют от рампы и располагают в теплом помещении или подогревают до полного размораживания. Затем их снова используют.

Эффективным способом опорожнения баллонов с диоксидом углерода является установка их в опрокинутом положении. В этом случае жидкий диоксид углерода выливается из баллонов. Во избежание замерзания при дросселировании вентилем вентиль подогревают электронагревательными элементами.

Контроль за сменой воздуха производится путем химического анализа вытесняемого воздуха. Его вытеснение считается законченным, если содержание диоксида углерода в смеси составит не менее 85 %. После этого закрывают вентиль выпуска из корпуса и все вентили коллектора.

Замена газовой среды возможна как на работающем СК, так и на остановленном.

Процесс вытеснения диоксида углерода водородом осуществляется следующим образом. Перед вытеснением продувают все импульсные трубки открытием их вентилей. Водород подают в верхний коллектор СК, а диоксид углерода удаляется через нижний коллектор. Заполнение СК водородом производится при избыточном давлении 10–20 кПа. Давление регулируют открытием вентиля, через который диоксид углерода вытесняется в атмосферу. Заполнение СК водородом считается законченным, когда химический анализ газа покажет, что в нем содержится 95–96 % водорода. Повышение давления водорода в СК до рабочего производится лишь после окончательного вытеснения диоксида углерода после закрытия выходного вентиля.

Контроль за вытеснением диоксида углерода на работающем СК ведется по дифференциальному манометру, а электрический газоанализатор должен быть отключен. Включение его производится в случае необходимости при чистоте водорода не ниже 90 %. Тогда же отбирается и первая проба газа для химического анализа.

Перевод СК с водородного на воздушное охлаждение производится следующим образом. Перед началом операции нагрузка СК снижается до 60–70 % его номинальной мощности — до значения, допустимого при работе с воздушным охлаждением. Порядок операций по вытеснению водорода диоксидом углерода такой же, как и при вытеснении воздуха диоксидом углерода. В корпусе СК поддерживается давление 10–20 кПа.

Вытеснение водорода диоксидом углерода заканчивается при содержании диоксида углерода в смеси, взятой из отборника на водородном коллекторе, не менее 95 % при остановленном СК и не менее 85 % на работающем СК.

Водород из СК должен выпускаться в атмосферу только через огнепреграждающее устройство.

Затем осуществляется вытеснение из корпуса СК диоксида углерода воздухом, подаваемым из ресивера по газопроводу через редуктор. Воздух подается до тех пор, пока диоксид углерода не удалится из СК полностью, то есть при условии содержания его в пробе не более 1 %.

Подготовка камеры контактных колец для работы внутри камеры (чистка, осмотр, замена щеток и др.) выполняется только при отключенном СК и остановленном роторе. Для последующего вскрытия камеры не обязательно вытеснение водорода из корпуса СК. Достаточно перекрыть вентили газопроводов, соединяющих камеру с корпусом, и отделить камеру от остального объема специальным (электромагнитным или механическим) уплотняющим устройством. Затем в камеру подается из баллона диоксид углерода. Время заполнения камеры диоксидом углерода, как правило, не превышает 10–15 мин.

Для вытеснения диоксида углерода воздух подается в камеру через верхний вентиль, а диоксид углерода выходит в атмосферу через нижний продувочный вентиль.

По окончании ремонта люк камеры закрывают, и воздух из нее сразу вытесняют диоксидом углерода, а затем диоксид углерода вытесняется водородом. Продувка камеры продолжается до тех пор, пока содержание водорода не станет таким же, как и в корпусе. После этого объемы камеры и корпуса соединяют открытием уплотнений и вентилей.

При контроле давления и чистоты водорода в СК с водородным охлаждением должны контролироваться давление и чистота водорода в корпусе машины. Давление водорода в СК поддерживается автоматически механическим регулятором давления или вручную при малой утечке водорода. Отклонение давления водорода от номинального значения допускается не более чем на 10 кПа для СК, работающих с избыточным давлением 50 кПа и выше, и не более чем на 1 кПа для СК с избыточным давлением 5 кПа.

Контроль за давлением ведется по манометру. При достаточной газоплотности корпуса суточная утечка водорода не превышает 2 % общего объема газа в СК.

Чистота водорода в СК при рабочем давлении 50 кПа должна быть не ниже 95 %, а при давлении 50 кПа и выше — не ниже 97 %. Снижение этих показателей повышает вероятность возникновения взрывоопасных смесей газов и приводит к дополнительному нагреву активных частей машины в среднем на 1 °C на каждые 1,5 % понижения чистоты водорода.

Помимо автоматического контроля чистоты водорода производится контрольный химический анализ газа. Показания электрического газоанализатора сверяются с результатами химического анализа.

Водород в СК должен быть сухим, с относительной влажностью не более 85 % при рабочем давлении и любой температуре холодного газа. Наличие влажности водорода вызывает конденсацию влаги внутри СК, снижает сопротивление изоляции обмоток, способствует повышенной коррозии стальных конструкций.

Влажность водорода контролируется по психрометру не реже 1 раза в неделю. Если влажность водорода повышается, то ее замеры производятся ежедневно.

Кроме того, проверяется отсутствие влаги в указателе уровня жидкости и у дренажных вентилей газовой системы. Причиной повышения влажности может быть как применение водорода с повышенным содержанием влаги, так и течь в газоохладителях.

В первом случае уменьшить содержание влаги можно путем продувки системы чистым сухим водородом, во втором случае — обнаружением поврежденного газоохладителя.

Необходимость строгого соблюдения требований безопасности при обслуживании систем водородного охлаждения обусловлена опасностью работы с водородом из-за возможного образования взрывоопасных смесей водорода с воздухом (если водорода содержится от 4 до 75 % по объему) или кислородом.

Взрывоопасная смесь образуется в корпусе СК по следующим причинам:

при понижении в нем давления водорода и подсосе воздуха;

при неполной продувке инертным газом во время замены охлаждающей среды;

при попадании водорода в СК через неплотно закрытые вентили, если отсутствует видимый разрыв по пути подачи водорода к коллектору.

Причинами взрыва могут быть местный нагрев, быстрое истечение газа, детонация, открытый огонь.

На случай внезапного повреждения водородной системы и загорания струи водорода вблизи СК должен находиться баллон с диоксидом углерода и шланги, которые позволят ликвидировать загорание на любом участке водородной системы.

 

Система водоснабжения

 

Источником технической воды, как правило, служат артезианские скважины или магистрали городского водопровода. При карбонатной жесткости артезианской воды более 3 мг-экв/кг в системах охлаждения СК устанавливают электромагнитные аппараты противонакипной обработки воды. Эти аппараты безреагентной водоподготовки не удаляют из воды образователи накипи, но создают условия, при которых ослабляется их кристаллизация на поверхности охладителей. После магнитной обработки в воде приостанавливается рост крупных кристаллов карбоната кальция. Мелкие же кристаллы в условиях движущегося потока жидкости не оседают на поверхностях охлаждения. В схеме водоснабжения предусматриваются электробойлеры для нагрева масла подшипников при пуске СК в зимнее время.

При обслуживании установок водоснабжения необходимо придерживаться следующих положений.

С целью повышения надежности пуска и работы электродвигателей циркуляционных насосов их питание должно осуществляться от разных секций собственных нужд ПС. В схеме должно быть предусмотрено включение резервного насоса при отключении любого рабочего насоса. Насос в схеме автоматического пуска должен быть заполнен, и его задвижки должны находиться в положении пуска.

При недостаточном уровне воды во всасывающем патрубке насоса его пуск не будет успешным. В применяемых схемах пуск циркуляционных насосов производится как при закрытых, так и при открытых задвижках на напорном трубопроводе. При пуске с закрытыми задвижками на них устанавливается электропривод, открывающий их после достижения двигателем номинальной частоты вращения. Такой кратковременный пусковой режим не опасен для электродвигателя и насоса.

На включенном СК должна быть сигнализация понижения давления воды в напорном трубопроводе, при срабатывании которой персонал обязан осмотреть работающие насосы и устранить причину понижения давления. При полном прекращении циркуляции воды в охладителях СК работать не может, поэтому он автоматически отключается от сети.

Газоохладители СК эффективно работают при протекании воды по всем их трубкам и полном заполнении их водой. Для этого расход воды через газоохладители регулируется не напорными, а сливными задвижками. Напорные задвижки необходимо держать полностью открытыми.

Водород или воздух, заполняющий корпус СК, содержит влагу в виде водяного пара. Количество водяного пара, находящегося в смеси с газом, зависит от температуры смеси. При понижении температуры содержание взвешенной влаги уменьшается. Сильное охлаждение трубок газоохладителей вызывает выпадение на поверхности трубок избытка влаги в виде капель росы.

Для предотвращения конденсации влаги на трубках газоохладителей температура поступающей в них воды не должна быть ниже 5-10 °C. Внешним признаком конденсации влаги на трубках газоохладителей служит ее конденсация на трубопроводах, подающих холодную воду. Если поверхность трубопроводов покрылась влагой, то вероятность конденсации влаги на трубках газоохладителей велика.

Для предотвращения конденсации влаги на трубках газоохладителей в зимнее время необходимо снижение интенсивности охлаждения воды в брызгальном бассейне. С этой целью на данной трубе полностью открывают задвижки зимнего сброса и прикрывают вентили разбрызгивателей. Полностью закрывать вентили части разбрызгивателей не следует, поскольку вода может замерзнуть в трубах. Чтобы избежать замораживания, вода должна непрерывно протекать через патрубки всех разбрызгивателей.

На практике часто имеют место течи газоохладителей, которые представляют собой серьезную опасность для изоляции обмоток и выводов СК, поскольку при этом в машину вносится большое количество влаги. Вода, скопившаяся в дренажном приямке, поступает в указатель жидкости, подающий сигнал о повреждении. На работающем СК повреждение отыскивают поочередным перекрытием газоохладителей задвижками на входе и выходе, наблюдая при этом за поступлением воды в указатель жидкости. Одновременно перекрывать оба газоохладителя, расположенных с одного торца СК, не следует, так как это может вызвать повышение температуры активных частей машины. Поиск отдельных поврежденных трубок в газоохладителе производится на отключенном от сети СК.

 

Система маслоснабжения

 

В соответствии с ПУЭ, на ПС с СК должны сооружаться два стационарных резервуара турбинного масла вне зависимости от количества и объема резервуаров изоляционного масла. Системы турбинного и изоляционного масла должны быть независимыми. Объем каждого резервуара должен быть не менее 110 % объема масляной системы наибольшего СК, устанавливаемого на данной ПС.

Маслоснабжение подшипников СК с водородным охлаждением осуществляется по следующей схеме.

Непрерывная циркуляция масла через подшипники и масляные уплотнители у СК мощностью 100 МВ-А и выше обеспечивается маслонасосом по замкнутому циклу. Нагретое масло охлаждается в маслоохладителе, встроенном в сливной бак.

Подача масла в подшипники контролируется двумя струйными реле, которые срабатывают при обрыве струи масла, а также при отключении маслонасоса. При этом струйное реле подает импульс на включение резервного маслонасоса, электродвигатель которого питается от шин постоянного тока.

Если циркуляция масла не восстанавливается, СК по истечении заданной выдержки времени (8-10 с) отключается от сети. Помимо струйных реле работа системы маслоснабжения контролируется манометрами, подключенными к напорным маслопроводам и индукционным реле уровня масла, вмонтированным в бак маслоохладителя и контролирующим уровень масла в нем. Температура масла измеряется термометром сопротивления и термометрическим сигнализатором.

Для систем маслосмазки применяется очищенное турбинное масло марки Т30 или Тп30.

Обслуживание системы маслоснабжения заключается в контроле за нормальной циркуляцией масла и давлением его в маслопроводах, а также за температурой охлаждающего масла и подшипников.

Давление масла в уплотнениях при вращающемся и неподвижном роторе СК должно превышать давление водорода в корпусе машины.

Нормальной температурой охлаждающего масла считается температура 25 °C с допустимыми отклонениями в пределах 20–40 °C.

В зимнее время перед пуском СК холодное масло в системе маслоснабжения подогревается подачей в маслоохладитель охлаждающей воды, нагретой до 60 °C, с помощью электробойлерной установки. Можно использовать также и горячую воду из системы отопления.

Температура подшипников в нормальных условиях не должна превышать 65 °C. Если температура повысится до 70 °C, термометрический сигнализатор подаст сигнал о возрастании температуры. Предельной считается температура 80 °C, при которой СК отключается от сети.

 

Требования к выключателям

 

Выключатели высокого напряжения в качестве коммутационных аппаратов предназначены для коммутации электрических цепей с целью включения и отключения токов нагрузки, токов намагничивания силовых трансформаторов и зарядных токов линий и шин, а также отключения токов КЗ, включая коммутацию при изменениях схем электроустановок.

Выключатели рассчитываются для работы практически во всех режимах электрической цепи, в том числе в тяжелом режиме отключения токов КЗ.

Исходя из этого, к выключателям предъявляются следующие требования:

надежное отключение любых токов нагрузки в пределах их номинальных значений;

быстродействие при отключениях, связанное с гашением дуги в возможно минимальный промежуток времени;

пригодность для АПВ после отключения электрической цепи под действием защиты;

обеспечение взрыво- и пожаробезопасности при всех видах коммутации;

удобство в обслуживании, в частности, каждый выключатель (или его привод) должен иметь хорошо видимый указатель положения «Включено» и «Отключено». Если выключатель не имеет открытых контактов, а его привод установлен отдельно (например, за стенкой) от выключателя, то указатели положения должны быть и на выключателе, и на его приводе.

Отключение и включение под напряжение и в работу присоединения, имеющего в своей цепи выключатель, производится дистанционно. При этом кнопка (ключ управления) выключателя удерживается в положении «Отключить» или «Включить» до момента срабатывания сигнализации, указывающей на окончание операции.

При отказе в отключении выключателя при дистанционном управлении во избежание несчастных случаев не допускается его отключение воздействием на кнопку местного управления, защелку привода или сердечник отключающего электромагнита. Для вывода выключателя в ремонт в этом случае обесточивается соответствующая секция или участок электроустановки. Отключение такого выключателя по месту допустимо лишь при настоятельной необходимости, например, для снятия напряжения с пострадавшего, если нет других вариантов.

Из многочисленных типов и конструкций выключателей на практике наибольшее распространение получили масляные выключатели с большим объемом масла, выключатели с малым объемом масла и воздушные выключатели. Все более широкое применение получают элегазовые и вакуумные выключатели.

Общими для всех выключателей основными конструктивными частями являются токопроводящие и контактные системы с дугогасительными устройствами, изоляционные конструкции, корпуса и вспомогательные элементы (газоотводы, предохранительные клапаны, указатели положения и др.), передаточные механизмы и приводы.

 

Обслуживание элементов КРУ

 

Обслуживание элементов КРУ 6-10 кВ. КРУ и КРУН поставляются в готовом виде шкафами со встроенными в них электрическим оборудованием, устройствами РЗиА, измерения, сигнализации и управления.

Шкаф КРУ — часть КРУ, являющаяся законченным изделием заводского изготовления и состоящая из жесткой металлической конструкции с устанавливаемыми в ней электрооборудованием и приборами (ГОСТ 14693-90).

Тип шкафов КРУ — совокупность шкафов КРУ с определенной схемой главных и вспомогательных цепей и определенным диапазоном параметров применяемой аппаратуры (ГОСТ 14693-90).

Шкафы могут быть стационарного (если коммутационные аппараты и оборудование установлены в корпусах шкафов неподвижно) или выдвижного (если оборудование установлены на выдвижных тележках) исполнения.

При осмотрах КРУ и КРУН без их отключения (через смотровые окна и сетчатые ограждения) проверяют:

работу сети освещения и отопления помещений и шкафов;

уровень масла в маслонаполненных аппаратах, отсутствие течей масла, состояние разъединителей, контактов первичной цепи, механизмов блокировки, состояние контактных соединений шин и их термоиндикаторов, степень загрязненности, отсутствие видимых повреждений и коронирования изоляторов, состояние цепей вторичных соединений, действие кнопок управления выключателями, состояние низковольтной аппаратуры (автоматических выключателей, предохранителей и т. д.), качество уплотнений дверей и днищ; отсутствие щелей, через которые могут проникнуть мелкие животные и птицы.

В КРУН при резких перепадах температуры наружного воздуха происходит повышение относительной влажности в шкафах и увлажнение поверхности изоляторов. Для недопущения перекрытий изоляции необходимо производить ее очистку от пыли. Одним из эффективных средств повышения надежности изоляции КРУН является обмазка изоляторов гидрофобными пастами.

Для поддержания в шкафах микроклимата с относительной влажностью воздуха 60–70 % их утепляют минераловатными плитами и оборудуют электроподогревателями, которые должны автоматически включаться, когда относительная влажность повышается до 65–70 %.

При температуре ниже 5 °C необходимо предусмотреть обогрев приборов учета и релейной аппаратуры, а при температуре ниже −25 °C предусмотреть обогрев масляных выключателей.

Нагревательные устройства включаются автоматически с помощью реле влажности воздуха (влагорегулятор ВДК) и термореле (датчик ДТКБ).

В жаркое время года температура КРУН может превысить максимально допустимую температуру 40 °C, что может нарушить работу контактных соединений аппаратов, концевых кабельных разделок и т. д. В этом случае для снижения перегрева КРУН (например, солнечными лучами) выполняется окраска поверхности шкафов белой краской, установка навесов, принудительная приточно-вытяжная вентиляция.

При недовключении масляного выключателя или повреждении его контактной системы под действием тока нагрузки или тока КЗ возникает дуга, что вызывает разложение масла с образованием взрывоопасной смеси газов.

Наиболее опасно ручное включение выключателя на неустраненное КЗ, при котором даже небольшая задержка кнопки выключателя в конечном положении приведет к повторному включению на КЗ после его автоматического отключения.

При обслуживании КРУ и выполнении ремонтных работ запрещается:

проникать в высоковольтную часть ячеек без снятия напряжения и наложения заземлений;

включать заземляющие ножи (накладывать заземления) без видимого разрыва электрической цепи и без проверки отсутствия напряжения на заземляемых токопроводящих частях;

производить работы на выключателе или приводе при взведенных пружинах и включенных цепях управления;

выводить из работы блокирующие устройства, демонтировать защитные шторки и перегородки между отсеками;

открывать выхлопные клапаны, поскольку это может привести к отключению выключателей;

производить осмотры и работы в КРУН во время грозы и дождя. При выполнении ремонтных работ в ячейках КРУ целесообразно предусматривать возможность полного обесточивания той или иной секции и неподвижных разъединяющих контактов. Внутри ячеек должны быть вывешены предупреждающие плакаты, например: «Внимание! Напряжение снизу».

В процессе ремонта запрещается перемещение защитных ограждений, снятие плакатов и заземлений, снятие замков со шторок и дверей ячеек.

Обслуживание КРУЭ 110–220 кВ. Применение КРУЭ позволяет уменьшить площади и объемы, занимаемые РУ, и обеспечить возможность более легкого расширения по сравнению с традиционными РУ.

К другим преимуществам КРУЭ можно отнести:

многофункциональность: в одном корпусе совмещены сборные шины, выключатель, разъединители с заземлителями, ТТ, ТН; это существенно уменьшает размеры и повышает надежность РУ;

взрыво- и пожаробезопасность;

высокую надежность и стойкость к воздействию внешней среды;

возможность установки в сейсмически активных районах и зонах с повышенной загрязненностью;

отсутствие электрических и магнитных полей;

безопасность и удобство эксплуатации, простоту монтажа и демонтажа.

КРУЭ собирают из обычных электрических элементов: выключателей, разъединителей, ТТ и ТН, сборных и соединительных шин.

Каждый элемент заключают в герметизированную металлическую заземленную оболочку, необходимую для сохранения элегаза под избыточным давлением. Во избежание нагрева оболочек переменным магнитным потоком они изготовлены из немагнитного металла (сплава алюминия, конструкционной стали). Оболочки отдельных элементов соединены между собой при помощи фланцев с уплотнениями из синтетического каучука, этиленпропилена и других материалов. Внутренние объемы оболочек нескольких элементов соединяют в секции. Каждая секция имеет контрольно-измерительную газовую аппаратуру.

Перед демонтажом элемента элегаз из него удаляется при помощи передвижной установки, содержащей вакуумный насос, компрессор и резервуар для газа. С помощью компрессора элегаз перекачивается в резервуар, пока давление в оболочке не снизится до 100 Па. Затем вскрываются люки на оболочке и производится демонтаж элемента или его ремонт.

Шинные и линейные разъединители размещаются в отдельных блоках. В блоке имеется контактный стержень, соединенный изолирующей штангой с рычажным механизмом привода, и розеточный ламельный контакт, в который входит контактный стержень при включении разъединителя, а также поперечный контактный стержень, предназначенный для стыковки элемента с другим элементом ячейки.

Заземлитель помещен в герметизированную оболочку. Он представляет собой подвижный стержень, соединенный через скользящий контакт с землей и входящий в розеточный контакт заземляемого элемента.

Разъединители и заземлитель имеют электромагнитную блокировку.

ТТ размещаются в герметизированной оболочке. Первичной обмоткой служит токопроводящий стержень, который проходит внутри магнитопровода со вторичной обмоткой. Магнитопровод и вторичная обмотка залиты эпоксидной смолой.



Поделиться:


Последнее изменение этой страницы: 2016-06-06; просмотров: 849; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.172.115 (0.114 с.)