Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятие объектно-ориентированного программирования

Поиск

По определению авторитета в области объектно-ориентированных методов разработки программ Гради Буча «объектно-ориентированное программирование (ООП) – это методология программирования, которая основана на представлении программы в виде совокупности объектов, каждый из которых является реализацией определенного класса (типа особого вида), а классы образуют иерархию на принципах наследуемости».

Объектно-ориентированная методология так же, как и структурная методология, была создана с целью дисциплинировать процесс разработки больших программных комплексов и тем самым снизить их сложность и стоимость.

Объектно-ориентированная методология преследует те же цели, что и структурная, но решает их с другой отправной точки и в большинстве случаев позволяет управлять более сложными проектами, чем структурная методология.

Как известно, одним из принципов управления сложностью проекта является декомпозиция. Гради Буч выделяет две разновидности декомпозиции: алгоритмическую (так он называет декомпозицию, поддерживаемую структурными методами) и объектно-ориентированную, отличие которых состоит, по его мнению, в следующем: «Разделение по алгоритмам концентрирует внимание на порядке происходящих событий, а разделение по объектам придает особое значение факторам, либо вызывающим действия, либо являющимся объектами приложения этих действий».

Другими словами, алгоритмическая декомпозиция учитывает в большей степени структуру взаимосвязей между частями сложной проблемы, а объектно-ориентированная декомпозиция уделяет больше внимания характеру взаимосвязей.

На практике рекомендуется применять обе разновидности декомпозиции: при создании крупных проектов целесообразно сначала применять объектно-ориентированный подход для создания общей иерархии объектов, отражающих сущность программируемой задачи, а затем использовать алгоритмическую декомпозицию на модули для упрощения разработки и сопровождения программного комплекса.

ОО-программирование является, несомненно, одним из наиболее интересных направлений для профессиональной разработки программ.

Объекты и классы

Базовыми блоками объектно-ориентированной програм­мы являются объекты и классы. Содержательно объект мож­но представить как что-то ощущаемое или воображаемое и имеющее хорошо определенное поведение. Таким образом, объект можно либо увидеть, либо потрогать, либо, по край­ней мере, знать, что он есть, например, представлен в виде информации, хранимой в памяти компьютера. Дадим определение объекта, придерживаясь мнения Гради Буча: «Объект – осязаемая сущность, которая четко проявляет свое поведение».

Объект — это часть окружающей нас реальности, т. е. он существует во времени и в пространстве (впервые понятие объекта в про­граммировании введено в языке Simula). Формально объект определить довольно трудно. Это можно сделать че­рез некоторые свойства, а именно: объект имеет состояние, поведение и может быть однозначно идентифицирован (дру­гими словами, имеет уникальное имя).

Класс — это множество объектов, имеющих общую структуру и общее поведение. Класс — описание (абстракция), которое показывает, как построить существующую во време­ни и пространстве переменную этого класса, называемую объектом. Смысл предложений «описание переменных клас­са» и «описание объектов класса» один и тот же.

Объект имеет состояние, поведение и паспорт (средство для его однозначной идентификации); структура и поведение объектов описаны в классах, переменными которых они яв­ляются.

Определим теперь понятия состояния, поведения и иденти­фикации объекта.

Состояние объекта объединяет все его поля данных (статический компонент, т.е. неизменный) и текущие значения каждо­го из этих полей (динамический компонент, т.е. обычно изменяющийся).

Поведение выражает динамику изменения состояний объ­екта и его реакцию на поступающие сообщения, т.е. как объект изменяет свои состояния и взаи­модействует с другими объектами.

Идентификация (рас­познавание) объекта — это свойство, которое позволяет от­личить объект от других объектов того же или других клас­сов. Осуществляется идентификация посредством уникального имени (паспорта), которым наделяется объект в программе, впрочем как и любая другая переменная.

Выше уже говорилось, что процедурный (а также и мо­дульный) подход позволяет строить программы, состоящие из набора процедур (подпрограмм), реализующих заданные алгоритмы. С другой стороны, объектно-ориентированный подход представляет программы в виде набора объектов, взаимодействующих между собой. Взаимодействие объектов осуществляется через сообщения. Предположим, что нашим объектом является окружность. Тогда сообщение, посланное этому объекту, может быть следующим: «нарисуй себя». Ко­гда мы говорим, что объекту передается сообщение, то на самом деле мы вызываем некоторую функцию этого объекта (компонент-функцию). Так, в приведенном выше примере мы вызовем функцию, которая будет рисовать окружность на экране дисплея.

Базовые принципы ООП

К базовым принципам объектно-ориентированного стиля программирования относятся:

· пакетирование или инкапсуляция;

· наследование;

· полиморфизм;

· передача сообщений.

Пакетирование (инкапсуляция)

предполагает соединение в одном объекте данных и функций, которые манипулируют этими данными. Доступ к некоторым данным внутри пакета может быть либо запрещен, либо ограничен.

Объект характеризуется как совокупностью всех своих свойств (например, для животных – это наличие головы, ушей, глаз и т.д.) и их текущих значений (голова – большая, уши – длинные, глаза – желтые и т.д.), так и совокупностью допустимых для этого объекта действий (умение принимать пищу, сидеть, стоять, бежать и т.д.). Указанное объединение в едином объекте как «материальных» составных частей (голова, уши, хвост, лапы), так и действий, манипулирующих этими частями (действие «бежать» быстро перемещает лапы) называется инкапсуляцией.

В рамках ООП данные называются полями объекта, а алгоритмы – объектными методами.

Инкапсуляция позволяет в максимальной степени изолировать объект от внешнего окружения. Она существенно повышает надежность разрабатываемых программ, т.к. локализованные в объекте алгоритмы обмениваются с программой сравнительно небольшими объемами данных, причем количество и тип этих данных обычно тщательно контролируется. В результате замена или модификация алгоритмов и данных, инкапсулированных в объект, как правило, не влечет за собой плохо прослеживаемых последствий для программы в целом. Другим немаловажным следствием инкапсуляции является легкость обмена объектами, переноса их из одной программы в другую.

Наследование

И структурная, и объектно-ориентированная методологии преследуют цель построения иерархического дерева взаимосвязей между объектами (подзадачами). Но если структурная иерархия строится по простому принципу разделения целого на составные части,

то при создании объектно-ориентированной иерархии принимается другой взгляд на тот же исходный объект. В объектно-ориентированной иерархии непременно отражается наследование свойств родительских (вышележащих) типов объектов дочерним (нижележащим) типам объектов.

По Гради Бучу «наследование – это такое отношение между объектами, когда один объект повторяет структуру и поведение другого».

Принцип наследования действует в жизни повсеместно и повседневно. Млекопитающие и птицы наследуют признаки живых организмов, в отличие от растений, орел и ворон наследуют общее свойство для птиц – умение летать. С другой стороны, львы, тигры, леопарды наследуют «структуру» и поведение, характерное для представителей отряда кошачьих и т.д.

Типы верхних уровней объектно-ориентированной иерархии, как правило, не имеют конкретных экземпляров объектов. Не существует, например, конкретного живого организма, который бы сам по себе назывался «млекопитающее» или «птица». Такие типы называют абстрактными. Конкретные экземпляры объектов имеют, как правило, типы самых нижних уровней ОО-иерархии: «крокодил Гена» – конкретный экземпляр объекта типа «крокодил», «кот Матроскин» – конкретный экземпляр объекта типа «кошка».

Наследование позволяет использовать библиотеки классов и развивать их (совершенствовать и модифицировать биб­лиотечные классы) в конкретной программе. Наследование позволяет создавать новые объекты, из­меняя или дополняя свойства прежних. Объект-наследник полу­чает все поля и методы предка, но может добавить собст­венные поля, добавить собственные методы или перекрыть своими методами одноименные унаследованные методы.

Принцип наследования решает проблему модификации свойств объекта и придает ООП в целом исключительную гибкость. При работе с объектами программист обычно подбирает объект, наиболее близкий по своим свойствам для решения конкретной задачи, и создает одного или нескольких потомков от него, которые «умеют» делать то, что не реализовано в родителе.

Последовательное проведение в жизнь принципа «наследуй и изменяй» хорошо согласуется с поэтапным подходом к разработке крупных программных проектов и во многом стимулирует такой подход.

Когда вы строите новый класс, наследуя его из сущест­вующего класса, можно:

· добавить в новый класс новые компоненты-данные;

· добавить в новый класс новые компоненты-функции;

· заменить в новом классе наследуемые из старого класса компоненты-функции.

Полиморфизм

позволяет использовать одни и те же функ­ции для решения разных задач. Полиморфизм выражается в том, что под одним именем скрываются различные действия, со­держание которых зависит от типа объекта.

Полиморфизм – это свойство родственных объектов (т.е. объектов, имеющих одного общего родителя) решать схожие по смыслу проблемы разными способами. Например, действие «бежать» свойственно большинству животных. Однако каждое из них (лев, слон, крокодил, черепаха) выполняет это действие различным образом.

При традиционном (не объектно-ориентированном) подходе к программированию, животных перемещать будет программист, вызывая отдельную для конкретного животного и конкретного действия подпрограмму.

В рамках ООП поведенческие свойства объекта определяются набором входящих в него методов, программист только указывает, какому объекту какое из присущих ему действий требуется выполнить, и (для рассматриваемого примера) однажды описанные объекты-животные сами будут себя передвигать характерным для них способом, используя входящие в его состав методы. Изменяя алгоритм того или иного метода в потомках объекта, программист может придавать этим потомкам отсутствующие у родителя специфические свойства. Для изменения метода необходимо перекрыть его в потомке, т.е. объявить в потомке одноименный метод и реализовать в нем нужные действия. В результате в объекте-родителе и объекте-потомке будут действовать два одноименных метода, имеющих разную алгоритмическую основу и, следовательно, придающие объектам разные свойства. Это и называется полиморфизмом объектов.

Таким образом, в нашем примере с объектами-животными действие «бежать» будет называться полиморфическим действием, а многообразие форм проявления этого действия – полиморфизмом.

Описание объектного типа

Класс или объект – это структура данных, которая содержит поля и методы. Как всякая структура данных она начинается зарезервированным словом и закрывается оператором end. Формальный синтаксис не сложен: описание объектного типа получается, если в описании записи заменить слово record на слово object или class и добавить объявление функций и процедур над полями.

Type <имя типа объекта>= object
<поле>;
<поле>;
….
<метод>;
<метод>;
end;

В ObjectPascal существует специальное зарезервированное слово class для описания объектов, заимствованное из С++.

Type <имя типа объекта>= class
<поле>;
….
<метод>;
<метод>;
end;

ObjectPascal поддерживает обе модели описания объектов.

Компонент объекта – либо поле, либо метод. Поле содержит имя и тип данных. Метод – это процедура или функция, объявленная внутри декларации объектного типа, в том числе и особые процедуры, создающие и уничтожающие объекты (конструкторы и деструкторы). Объявление метода внутри описания объектного типа состоит только из заголовка. Это разновидность предварительного описания подпрограммы. Тело метода приводится вслед за объявлением объектного типа.

Пример. Вводится объектный тип «предок», который имеет поле данных Name (имя) и может выполнять два действия:

· провозглашать: «Я – предок!»;

· сообщать свое имя.

Type tPredoc = object Name: string; {поле данных объекта}
Procedure Declaration; {объявление методов объекта}
Procedure MyName;
End;

Тексты подпрограмм, реализующих методы объекта, должны приводиться в разделе описания процедур и функций. Заголовки при описании реализации метода повторяют заголовки, приведенные в описании типа, но дополняются именем объекта, которое отделяется от имени процедуры точкой. В нашем примере:

Procedure tPredoc.Declaration; {реализация метода объекта}
begin
writeln (‘Я – предок!’);
end;
Procedure tPredoc.MyName; {реализация метода объекта}
begin
writeln(‘Я –’, Name);
end;

Внутри описания методов на поля и методы данного типа ссылаются просто по имени. Так метод MyName использует поле Name без явного указания его принадлежности объекту так, если бы выполнялся неявный оператор with <переменная_типа_объект> do.

Под объектами понимают и переменные объектного типа – их называют экземплярами. Как всякая переменная, экземпляр имеет имя и тип: их надо объявить.

…….{объявление объектного типа и описание его методов}
var v 1: tPredoc; {объявление экземпляра объекта}
begin
v1. Name:= ‘Петров Николай Иванович’;
v1.Declaration;
v1.MyName
end.

Использование поля данных объекта v1 не отличается по своему синтаксису от использования полей записей. Вызов методов экземпляра объекта означает, что указанный метод вызывается с данными объекта v 1. В результате на экран будут выведены строчки

Я – предок!
Я – Петров Николай Иванович

Аналогично записям, к полям переменных объектного типа разрешается обращаться как с помощью уточненных идентификаторов, так и с помощью оператора with.

Например, в тексте программы вместо операторов

v1.Name:= ‘Петров Николай Иванович’;
v1.Declaration;
v1.MyName

возможно использование оператора with такого вида

with v1 do
begin
Name:= ‘Петров Николай Иванович’;
Declaration;
MyName
End;

Более того, применение оператора with с объектными типами, также как и для записей не только возможно, но и рекомендуется.

Иерархия типов (наследование)

Типы можно выстроить в иерархию. Объект может наследовать компонен­ты из другого объектного типа. Наследующий объект — это потомок. Объект, которому наследуют — предок. Подчеркнем, что наследование относится только к типам, но не к экземплярам объектов.

Если введен объектный тип (предок, родительский), а его надо дополнить полями или методами, то вводится новый тип, объявляется наследником (потомком, дочерним типом) первого и описываются только новые поля и методы. Потомок содержит все поля типа предка. Заметим, что поля и ме­тоды предка доступны потомку без специальных указаний. Если в описании потомка повторяются имена полей или методов предка, то новые описания переопределяют поля и методы предка.

ООП всегда начинается с базового класса. Это шаблон для базового объекта. Следующим этапом является определение нового класса, который называется производным и является расширением базового.

Производный класс может включать дополнительные методы, которые не существуют в базовом классе. Он может переопределять (redefined) методы (или даже удалять их целиком).

В производном классе не должны переопределяться все методы базового класса. Каждый новый объект наследует свойства базового класса, необходимо лишь определить те методы, которые являются новыми или были изменены. Все другие методы базового класса считаются частью и производного. Это удобно, т.к. когда метод изменяется в базовом классе, он автоматически изменяется во всех производных классах.

Процесс наследования может быть продолжен. Класс, который произведен от базового, может сам стать базовым для других производных классов. Таким образом, ОО программы создают иерархию классов.

Пример иерархической структуры объектов

Наиболее часто структура иерархии классов описывается в виде дерева. Вершины дерева соответствуют классам, а корню соответствует класс, который описывает что-то общее (самое общее) для всех других классов.

Наследование дочерними типами информационных полей и методов их родительских типов выполняется по следующим правилам.

Правило 1. Информационные поля и методы родительского типа наследуются всеми его дочерними типами независимо от числа промежуточных уровней иерархии.

Правило 2. Доступ к полям и методам родительских типов в рамках описания любых дочерних типов выполняется так, как будто-бы они описаны в самом дочернем типе.

Правило 3. Ни в одном дочернем типе не могут быть использованы идентификаторы полей родительских типов.

Правило 4. Дочерний тип может доопределить произвольное число собственных методов и информационных полей.

Правило 5. Любое изменение текста в родительском методе автоматически оказывает влияние на все методы порожденных дочерних типов, которые его вызывают.

Правило 6. В противоположность информационным полям идентификаторы методов в дочерних типах могут совпадать с именами методов в родительских типах. В этом случае говорят, что дочерний метод перекрывает (подавляет) одноименный родительский метод. В рамках дочернего типа, при указании имени такого метода, будет вызываться именно дочерний метод, а не родительский.

Продолжим рассмотрение нашего примера. В дополнение к введенному нами типу предка tPredoc можно ввести типы потомков:

tуре tSon= оbject(tPredoc) {Тип, наследующий tPredoc }
procedure Declaration; {перекрытие методов предка}
procedure Му Name(Predoc: tPredoc);
end;

tуре tGrandSon=object(tSon) {Тип, наследующий tSon}
procedure Declaration; {перекрытие методов предка}
end;

Имя типа предка приводится в скобках после слова оbject. Мы породили наследственную иерархию из трех типов: tSon («сын») наследник типу tPredoc, а тип tGrandSon (“внук”) ­- типу tSon. Тип tSon переопределяет методы Declaration и Му N а m е, но наследует поле Name. Тип tGrandSon переопределяет только метод Declaration и наследует от общего предка поле Name, а от своего непосредственного предка (типа tSon) переопределенный метод Declaration.

Давайте разберемся, что именно мы хотим изменить в родительских методах. Дело в том, что «сын» должен провозглашать несколько иначе, чем его предок, а именно сообщить ‘Я – отец!’

procedure tSon.Declaration; {реализация методов объектов — потомков}
begin
writeln (' Я — отец!');
end;

А называя свое имя, “сын” должен сообщить следующие сведения:

· Я <фамилия имя отчество >

· Я – сын <фамилия имя отчество своего предка>

procedure tSon.Му Name (predoc: tPredoc);
begin
inherited Му Name; {вызов метода непосредственного предка}
writeln ('Я — сын ', predoc.Name, ‘ а ’);
end;

В нашем примере потомок tSon из метода Му Name вызывает одноимен­ный метод непосредственного предка типа tPredoc. Такой вызов обес­печивается директивой inherited, после которой указан вызываемый метод непосредственного предка. Если возникает необходимость вызвать метод отдаленного предка в каком-нибудь дочернем типе на любом уровне иерархии, то это можно сделать с помощью уточненного идентификатора, т.е. указать явно имя типа родительского объекта и через точку – имя его метода:

TPredoc.MyName;

Теперь давайте разберемся с «внуком». Метод, в котором «внук» называет свое имя, в точности такой же, как и у его непосредственного предка (типа tSon), поэтому нет необходимости этот метод переопределять, этот метод лучше автоматически наследовать и пользоваться им как своим собственным. А вот в методе Declaration нужно провозгласить ‘Я – внук!’, поэтому метод придется переопределить.

procedure tGrandSon.Declaration;
begin
writeln (' Я — внук!');
end;

Рассмотрим пример программы, в которой определим экземпляр типа tPredoc, назовем его «дед», экземпляр типа tSon – «отец», и экземпляр типа tGrandSon – «внук». Потребуем от них, чтобы они представились.

Пример программы с испльзованием ООП

{заголовок программы}
……………….
{раздел описания типов, в том числе и объектных типов tPredoc, tSon, tGrandSon }
{Обратите внимание! Экземпляры объектных типов можно описать как типизированные константы, что мы для примера и сделали ниже}
const ded: tPredoc = (Name: 'Петров Николай Иванович');
otec: tSon = (Name: 'Петров Сергей Николаевич');
vnuk: tGrandSon = (Name: 'Петров Олег Сергеевич');
{раздел описания процедур и функций, где обязательно должны быть написаны все объявленные в объектных типах методы}
begin
ded.Declaration; {вызов методов общего предка}
ded.Му Name;
writeln;
otec.Declaration;
otec.MyName(ded); { вызов методов объекта otec типа tSon}
writeln;
vnuk.Declaration; { вызов методов объекта vnuk типа tGrandSon}
vnuk.MyName (otec);
end.

Наша программа выведет на экран:

Пример вывода на экран результата

Я —предок!
Я —Петров Николай Иванович

Я —отец!
Я —Петров Сергей Николаевич
Я —сын Петров Николай Ивановича

Я —внук!
Я —Петров Олег Сергеевич
Я —сын Петров Сергей Николаевича

Обратите внимание, что в заголовке процедуры tSon. MyName в качестве параметра приведен тип данных tPredoc, а при использовании этой процедуры ей передаются переменные как типа tPredoc, так и типа tSon. Это возможно, так как пре­док совместим по типу со своими потомками. Обратное несправедливо. Если мы заменим в заголовке процедуры tSon. MyName при описании параметров тип tPredoc на tSon, компилятор укажет на несовместимость типов при использовании перемен­ной ded в строке otec. MyName (ded).

Полиморфизм и виртуальные методы

Полиморфизм – это свойство родственных объектов (т.е. объектов, имеющих одного родителя) решать схожие по смыслу проблемы разными способами.

Два или более класса, которые являются производными одного и того же базового класса, называются полиморфными. Это означает, что они могут иметь общие характеристики, но так же обладать собственными свойствами.

В рамках ООП поведенческие свойства объекта определяются набором входящих в него методов. Изменяя алгоритм того или иного метода в потомках объекта, программист может придавать этим потомкам отсутствующие у родителя специфические свойства. Для изменения метода необходимо перекрыть его в потомке, т.е. объявить в потомке одноименный метод и реализовать в нем нужные действия. В результате чего в объекте-родителе и объекте-потомке будут действовать два одноименных метода, имеющих разную алгоритмическую основу и, следовательно, придающие объектам разные свойства. Это и называется полиморфизмом объектов.

В рассмотренном выше примере во всех трех объектных типах tPredoc, tSon и tGrandSon действуют одноименные методы Declaration и MyName. Но в объектном типе tSon метод MyName выполняется несколько иначе, чем у его предка. А все три одноименных метода Declaration для каждого объекта выполняются по-своему.

Методы объектов бывают статическими, виртуальными и динамическими.

Статические методы

включаются в код программы при компиляции. Это означает, что до использования программы определено, какая процедура будет вызвана в данной точке. Компилятор определяет, какого типа объект используется при данном вызове, и подставляет метод этого объекта.

Объекты разных типов могут иметь одноименные статические методы. В этом случае нужный метод определяется по типу экземпляра объекта.

Это удобно, так как одинаковые по смыслу методы разных типов объектов можно и назвать одинаково, а это упрощает понимание и задачи и программы. Статическое перекрытие – первый шаг полиморфизма. Одинаковые имена – вопрос удобства программирования, а не принцип.

Виртуальные методы

в отличие от статических, подключаются к основному коду на этапе выполнения программы. Виртуальные методы дают возможность определить тип и конкретизировать экземпляр объекта в процессе исполнения, а затем вызвать методы этого объекта.

Этот принципиально новый механизм, называемый поздним связыванием, обеспечивает полиморфизм, т.е. разный способ поведения для разных, но однородных (в смысле наследования) объектов.

Описание виртуального метода отличается от описания обычного метода добавлением после заголовка метода служебного слова virtual.

procedure Method (список параметров); virtual;

Использование виртуальных методов в иерархии типов объектов имеет определенные ограничения:

· если метод объявлен как виртуальный, то в типе потомка его нельзя перекрыть статическим методом;

· объекты, имеющие виртуальные методы, инициализируются специальными процедурами, которые, в сущности, также являются виртуальными и носят название constructor;

· списки переменных, типы функций в заголовках перекрывающих друг друга виртуальных процедур и функций должны совпадать полностью;

Обычно на конструктор возлагается работа по инициализации экземпляра объекта: присвоение полям исходных значений, первоначальный вывод на экран и т.п.

Помимо действий, заложенных в него программистом, конструктор выполняет подготовку механизма позднего связывания виртуальных методов. Это означает, что еще до вызова любого виртуального метода должен быть выполнен какой-нибудь конструктор.

Конструктор – это специальный метод, который инициализирует объект, содержащий виртуальные методы. Заголовок конструктора выглядит так:

constructor Method (список параметров);

Зарезервированное слово constructor заменяет слова procedure и virtual.

Основное и особенное назначение конструктора – установление связей с таблицей виртуальных методов (VMT) – структурой, содержащей ссылки на виртуальные методы. Таким образом, конструктор инициализирует объект установкой связи между объектом и VMT с адресами кодов виртуальных методов. При инициализации и происходит позднее связывание.

У каждого объекта своя таблица виртуальных методов VMT. Именно это и позволяет одноименному методу вызывать различные процедуры.

Упомянув о конструкторе, следует сказать и о деструкторе. Его роль противоположна: выполнить действия, завершающие работу с объектом, закрыть все файлы, очистить динамическую память, очистить экран и т.д.

Заголовок деструктора выглядит таким образом:

destructor Done;

Основное назначение деструкторов – уничтожение VMT данного объекта. Часто деструктор не выполняет других действий и представляет собой пустую процедуру.

destructor Done;
begin end;

 


31. Описание переменных в языке Турбо-Паскаль.

Программа - это последовательность команд, предназначенных для выполнения компьютером. Каждая команда программы называется оператором.
Идентификатор - словесное обозначение какого-либо объекта в программе. Строится по следующим правилам:

  1. Может состоять только из:
    1. латинских букв (A,B,C,...,Z, a,b,c,...,z);
    2. b) цифр (1,2,3,...,9);
    3. c) знаков подчеркивания (_).
  2. Не может начинаться с цифры.
  3. Заглавные и строчные буквы не различаются.
  4. В программе не может быть двух различных объектов с одним и тем же идентификатором.

Константа - это величина постоянная для конкретной программы.
Переменная - это величина, которая может менять свое значение в процессе программы.

Структура программы на языке Паскаль

  1. Заголовок программы
  2. Раздел описания:
    1. описание констант;
    2. описание типов данных;
    3. описание переменных;
    4. описание процедур и функций.
  3. Тело программы.

Заголовок программы
Синтаксис:
Program <идент. программы>;

Пример:
Program Numbers;
Program Test_user;

Раздел переменных
Синтаксис:
Var <имя переменной>: <тип переменной>;
Пример:
Var perem: Integer;

Тело программы
Begin
<команда>;
……
End.

 

Стандартные типы данных

тип диапазон значений требуемая память
Shortint -128.. 127 1 байт
Integer -32768.. 32767 2 байта
Longint -2147483648.. 2147483647 4 байта
Byte 0.. 255 1 байт
Word 0.. 65535 2 байта

Вывод информации на экран - команда Write();

Ожидание ввода чего-либо с клавиатуры - команда Read();

 


32. Отладка программы. Классификация ошибок



Поделиться:


Последнее изменение этой страницы: 2016-08-15; просмотров: 718; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.200.56 (0.011 с.)