Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Исследование законов теплового излученияСодержание книги
Поиск на нашем сайте
Цель работы: познакомиться с законами теплового излучения тел: 1) экспериментально проверить выполнение закона Стефана − Больцмана; 2) определить спектр излучения лампы накаливания. Оборудование: установка 1: источник излучения, термостолбик, милливольтметр; установка 2: лампа накаливания, монохроматор с отражательной дифракционной решеткой, кремниевый фотоэлемент, мультиметр. Тепловое излучение – это излучение электромагнитных волн атомами и молекулами за счет энергии теплового движения. Тепловое излучение, как и тепловое движение, существует во всем интервале температур выше абсолютного нуля. Параметрами теплового излучения являются: W – энергия излучения; – поток, то есть мощность излучения со всей поверхности тела; – энергетическая светимость, то есть мощность, излучаемая единицей площади поверхности тела; – спектральная плотность энергетической светимости, которая характеризует распределение излучения по длинам волн и равна мощности излучения с единицы площади тела в единичном интервале длин волн. Тепловое излучение тел зависит от их поглощательной способности, которая равна отношению поглощенного потока к падающему: . Особое место занимает абсолютно черное тело, которое полностью поглощает падающее на него излучение, а = 1. Таких тел в природе нет. Даже для сажи а = 0,98. Моделью абсолютно черного тела может служить поверхность небольшого отверстия в полости, так как луч света, попав в полость, после многократных отражений исчезает. Если поглощательная способность одинакова во всем интервале длин волн и меньше единицы, то такое тело называется серым. Рассмотрим законы теплового излучения. Пусть в теплоизолированной оболочке рядом расположены две пластины единичной площади, которые обмениваются тепловым излучением. Пусть одна из них абсолютно черное тело, у другой поглощательная способность а < 1. При тепловом равновесии для второго тела излучаемая мощность в некотором интервале длин волн должна быть равна поглощаемой мощности: . Но поглощаемая мощность излучается первым абсолютно черным телом: . Подставив ее в уравнение баланса мощности двух пластин, получим: . (1)
Это закон Кирхгофа: отношение спектральной плотности энергетической светимости тела к его поглощательной способности не зависит от природы тела и является универсальной функцией длины волны и температуры. Универсальная функция Кирхгофа имеет смысл спектральной плотности энергетической светимости абсолютно черного тела, rачт= f(λ,T) (рис. 1). Отсюда следует, что чем больше поглощательная способность тела, тем больше оно должно излучать. Например, при одинаковой температуре около 1000 К кусок черного угля ярко светится, а белый мел или прозрачный кварц почти не излучают. Формула этой функции была получена М. Планком, который при выводе впервые в истории науки ввел понятие о квантовании энергии излучения атомов: e = h n, где h – постоянная Планка, n – частота излучения. Формула Планка идеально совпала с экспериментальной зависимостью спектральной плотности энергетической светимости для абсолютно черного тела (рис.1): . (2) Формула Планка подтвердила ранее установленные экспериментальные законы теплового излучения абсолютно черного тела. Если определить положение максимума, приравняв первую производную к нулю, то будет подтвержден закон смещения Вина: длина волны, при которой спектральная плотность энергетической светимости максимальна, обратно пропорциональна абсолютной температуре , (3)
где b = 2890 мкм/К – постоянная Вина. С повышением температуры излучение тела смещается в диапазон все более коротких длин волн. Максимум спектральной плотности энергетической светимости абсолютно черного тела пропорционален пятой степени абсолютной температуры: r max = С Т 5. (4)
Если проинтегрировать , то будет подтвержден закон Стефана – Больцмана: энергетическая светимость абсолютно черного тела пропорциональна четвертой степени абсолютной температуры
R = s T 4, (5)
где s = 5,67 10 –8 Вт/м 2К 4 – постоянная Стефана – Больцмана.
Экспериментальное изучение законов теплового излучения производится на одной из установок. Задание 1. Проверка закона Стефана − Больцмана. Цилиндр с глубоким отверстием нагревается электрической спиралью. Температура цилиндра измеряется термопарой, подключенной к милливольтметру в градусах Цельсия. Отверстие цилиндра является абсолютно черным излучателем (рис. 2). Часть потока излучения попадает на приемник термостолбика. Здесь k – коэффициент пропорциональности, равный доле потока излучения излучателя, поглощенного приемником. При комнатной температуре термостолбик находится в тепловом равновесии с окружающей средой и поэтому термоЭДС равна нулю. При повышении температуры излучателя будет повышаться поток, поглощенный приемником, будет пропорционально повышаться его температура, появится термоЭДС. ТермоЭДС термопар в небольшом интервале температур пропорциональна разности температур нагретого приемника и окружающей среды и, значит, пропорциональна повышению поглощенного потока излучения . Если экспериментально подтвердить пропорциональность термоЭДС термостолбика от параметра , то примененный при выводе закон Стефана – Больцмана справедлив. ТермоЭДС измеряется милливольтметром.
|
||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 189; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.152.147 (0.006 с.) |