Связи и их реакции. Аксиома связей. Основные виды связей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Связи и их реакции. Аксиома связей. Основные виды связей

Поиск

Основные понятия и аксиомы статики

Аксиомы (законы) статики: 1) аксиома инерции: Под действием взаимно уравновешивающихся сил материальная точка (тело) находится в состоянии покоя или движется прямолинейно и равномерно. 2) аксиома равновесия двух сил: Две силы, приложенные к абсолютно твердому телу, будут уравновешены тогда и только тогда, когда они равны по модулю, действуют по одной прямой и направлены в противоположные стороны. 3) аксиома присоединения и исключения уравновешивающихся сил: Действие системы сил на абс. твердое тело не изменится, если к ней прибавить или отнять уравновешенную систему сил. Следствие: Действие силы на абс.тв. тело не изменится, если перенести точку приложения силы вдоль ее линии действия. Т.е. сила, приложенная к абс.тв. телу– скользящий вектор. 4) аксиома параллелограмма сил: Равнодействующая двух пересекающихся сил приложена в точке их пересечения и изображается диагональю параллелограмма, построенного на этих силах. ; . 5) аксиома равенства действия и противодействия (3-й закон Ньютона): Всякому действию соответствует равное и противоположно направленное противодействие. 6) принцип отвердевания: Равновесие сил, приложенных к нетвердому телу, не нарушается при его затвердевании.

Связи и их реакции. Аксиома связей. Основные виды связей

Тело называется свободным, если его перемещения ничем не ограничены. Тело, перемещение которого ограничено другими телами, назыв. несвободным. Тела, ограничивающие перемещения данного тела, назыв. связями. Силы, с которыми связи действуют на данное тело, назыв. реакциями связей. Принцип освобождаемости: Всякое несвободное тело можно рассматривать как свободное, если действие связей заменить их реакциями, приложенными к телу. Основные типы связей: а) опора на идеально гладкую поверхность – реакция поверхности направлена по нормали к ней, т.е. перпендикулярно касательной – нормальная реакция; б) одна из соприкасающихся поверхностей является точкой (угол), реакция направлена по нормали к другой поверхности; в) нить – реакция направлена вдоль нити к точке подвеса; г) цилиндрический шарнир (шарнирно-неподвижная опора) – реакция может иметь любое направление в плоскости. При решении задач заменяется двумя взаимно перпендикулярными составляющими; д) цилиндрическая шарнирно-подвижная опора (шарнир на катках) – реакция направлена перпендикулярно опорной плоскости; е) сферический (шаровой) шарнир – реакция может иметь любое направление в пространстве. При решении задач заменяется тремя взаимно перпендикулярными составляющими; ж) невесомый стержень (обязательно невесомый) – реакция направлена вдоль стержня; з) "глухая" заделка (вмурованная балка) – возникает произвольно направленная реакция – сила и реактивный момент, также неизвестный по направлению. Реакция раскладывается на две составляющие.

 

Теорема о параллельном переносе силы. Основная теорема статики о привидении системы сил к заданному центру (теорема Пуансо)

Силу, приложенную к твердому телу, можно, не изменяя ее действия, перенести параллельно самой себе в любую точку тела, прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, в которую она переносится (см. рисунок 2.4).

Три формы условий равновесия для произвольной плоской системы сил. Условия равновесия плоской системы параллельных сил.

Плоская система сил – система сил, расположенных в одной плоскости. Система сил приводится к одной силе – главному вектору и к паре сил, момент которой равен главному моменту. Момент пары сил направлен перпендикулярно к плоскости, в которой лежат силы. В плоских системах нет необходимости использовать векторное представление момента. Теорема Вариньона – если плоская система сил приводится к равнодействующей, то ее момент относительно какой-либо точки равен алгебраической (т.е. с учетом знака) сумме моментов всех сил относит. той же точки.

Условия равновесия пл. сист. сил: векторное: . аналитич:

, или

где А,В,С – точки, не лежащие на одной прямой, или , ось "х" не перпендикулярна отрезку АВ.

Равновесие системы тел

Связи, соеди­няющие части системы тел, называют внутрен­ними. Если внешние связи заменить силами, то ус­ловий равновесия недостаточно для их определе­ния. Методы решения таких задач:

а) пользуясь свойствами внутренних связей, составляют дополнительные условия равновесия. Так, для системы на рисунке 3.1 а, четвертым уравнением будет равенство нулю суммы момен­тов относительно шарнира С всех сил, приложен­ных к какую-либо одной из ее половин;

б) мысленно расчленяют конструкцию на от­дельные части, заменяя внутренние связи силами (см. рисунок 3.1 б). Для каждой половины имеем по три независимых условия равновесия, из которых находим шесть неизвестных.

Основные понятия и аксиомы динамики. Дифференциальные уравнения движения материальной точки.

Динамикой называют раздел механики, в котором рассматривается движение материальных тел под действием приложенных к ним сил с учетом инерции. Инерцией называется свойство материального тела сохранять состояние движения или покоя при отсутствии действующих на тело сил. Физическую величину, зависящую от количества вещества и являющуюся мерой инерции тела в поступательном движении, называется массой тела m.

Основой динамики точки являются 4 аксиомы, изложенные ниже.

1-я аксиома (закон инерции): материальная точка (МТ), к которой не приложены силы, находится в состоянии покоя или равномерного прямолинейного движения, пока приложенные к ней силы не изменяют этого состояния. Движение МТ при отсутствии сил называют инерциальным. Систему отсчета (СО), в которой действует закон инерции, называют инерциальной СО. В большинстве задач СО, связанная с Землей, считается инерциальной.

2-я аксиома (основной закон динамики): ускорение МТ пропорционально приложенной к ней силе и направлено так же, как сила.Основное уравнение . (5.1)

3-я аксиома (закон о действии и противодействии): две МТ действуют друг на друга с равными по модулям силами, которые лежат на соединяющей эти точки прямой и направлены в противоположные стороны.

4-я аксиома (закон независимости действия сил): геометрическая сумма ускорений, которые сообщаются МТ отдельно каждой приложенной к ней силой, равна ускорению, которое МТ получит под действием на нее всех сил. (5.2)

Вместо (5.2) можно пользоваться уравнением (5.1), понимая под силой равнодействующую.

Под действием на тело силы тяжести у тела возникает одно и то же ус­корение , которое называют ускорением силы тяжести (ускорением свобод­ного падения). Если к МТ приложена только сила тяжести , то по (5.1)

. (5.2)

Масса тела не зависит от его местонахождения и от сил, приложенных к телу, а вес тела меняется с изменением ускорения силы тяжести в зависимости от географической широты места и расстояния от центра Земли.

Для решения задач динамики точки будем пользоваться уравнениями в декартовых координатах:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рассмотрим материальную точку, движущуюся под действием сил по отношению к инерциальной системе отсчета Oxyz. Проектируя обе части равенства на оси х, у, z, получим: или, обозначая вторые производные по времени двумя точками, . Это и будут искомые уравнения, т. е. дифференциальные уравнения движения точки в прямоугольных декартовых координатах.

Решение первой задачи динамики (определение сил по заданному движению). Если ускорение движущейся точки задано, то действующая сила или реакция связи сразу находится по уравнению . При этом для вычисления реакции надо дополнительно знать активные силы. Когда ускорение непосредственно не задано, но известен закон движения точки, то для определения силы можно воспользоваться уравнениями .

Решение основной задачи динамики при прямолинейном движении точки. Если при прямолинейном движении направить вдоль траектории координатную ось Ох, то движение точки будет определяться первым из уравнений , т. е. или - дифф-ое ур-е прямолинейного движения точки. Иногда его удобнее заменить 2-мя ур-ми, содержащими первые производные: , В случаях, когда при решении задачи надо искать зависимость скорости от координаты х, а не от времени t, ур-е преобразуют к переменному х. Так как , то получим:

Решение основной задачи динамики сводится к тому, чтобы из данных ур-й, зная силы, найти закон движения точки, т.е. х=f(t). Для этого надо проинтегрировать соответствующее дифф-е ур-е. Общее решение ур-я будет иметь вид

Необходимо определить значения постоянных С1 и С2. Для этого используются обычно так называемые начальные условия. По начальным условиям можно определить конкретные значения постоянных С1 и С2 и найти частное решение уравнения , дающее закон движения точки, в виде

 

 

16)Количество движения материальной точки. Импульс силы. Теорема об изменении количества движения материальной точки. Теорема об изме­нении момента количества движения материальной точки.

При решении многих задач динамики вместо интегрирования ДУД оказывается более эффективным использо­вание т.н. общих теорем динамики.

Рассмотрим теорему об изменении количества движения точки.Количеством движения МТ называют величину mv, равную произведению массы точки на ее скорость. Вектор mv направлен по ка­сательной к траектории точки.

Элементарным импульсом силы называют величину

(5.5)

равную произведению силы на элементарный промежуток времени. Направлен импульс вдоль линии действия силы. Импульс S силы F за конечное время t1

. (5.6)

Модуль и направление импульса можно вычислить по его проекциям

. (5.7)

Основной закон динамики можно представить в виде

. (5.8)

Это теорема об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна сумме действующих на точку сил. Та же теорема в конечном виде: изменение количества движения точки за некоторый промежуток вре­мени равно сумме импульсов всех действующих на точку сил за этот промежуток времени

(5.9)

При решении задач обычно поль­зуются уравнениями в проекциях.

Основные понятия и аксиомы статики

Аксиомы (законы) статики: 1) аксиома инерции: Под действием взаимно уравновешивающихся сил материальная точка (тело) находится в состоянии покоя или движется прямолинейно и равномерно. 2) аксиома равновесия двух сил: Две силы, приложенные к абсолютно твердому телу, будут уравновешены тогда и только тогда, когда они равны по модулю, действуют по одной прямой и направлены в противоположные стороны. 3) аксиома присоединения и исключения уравновешивающихся сил: Действие системы сил на абс. твердое тело не изменится, если к ней прибавить или отнять уравновешенную систему сил. Следствие: Действие силы на абс.тв. тело не изменится, если перенести точку приложения силы вдоль ее линии действия. Т.е. сила, приложенная к абс.тв. телу– скользящий вектор. 4) аксиома параллелограмма сил: Равнодействующая двух пересекающихся сил приложена в точке их пересечения и изображается диагональю параллелограмма, построенного на этих силах. ; . 5) аксиома равенства действия и противодействия (3-й закон Ньютона): Всякому действию соответствует равное и противоположно направленное противодействие. 6) принцип отвердевания: Равновесие сил, приложенных к нетвердому телу, не нарушается при его затвердевании.

Связи и их реакции. Аксиома связей. Основные виды связей

Тело называется свободным, если его перемещения ничем не ограничены. Тело, перемещение которого ограничено другими телами, назыв. несвободным. Тела, ограничивающие перемещения данного тела, назыв. связями. Силы, с которыми связи действуют на данное тело, назыв. реакциями связей. Принцип освобождаемости: Всякое несвободное тело можно рассматривать как свободное, если действие связей заменить их реакциями, приложенными к телу. Основные типы связей: а) опора на идеально гладкую поверхность – реакция поверхности направлена по нормали к ней, т.е. перпендикулярно касательной – нормальная реакция; б) одна из соприкасающихся поверхностей является точкой (угол), реакция направлена по нормали к другой поверхности; в) нить – реакция направлена вдоль нити к точке подвеса; г) цилиндрический шарнир (шарнирно-неподвижная опора) – реакция может иметь любое направление в плоскости. При решении задач заменяется двумя взаимно перпендикулярными составляющими; д) цилиндрическая шарнирно-подвижная опора (шарнир на катках) – реакция направлена перпендикулярно опорной плоскости; е) сферический (шаровой) шарнир – реакция может иметь любое направление в пространстве. При решении задач заменяется тремя взаимно перпендикулярными составляющими; ж) невесомый стержень (обязательно невесомый) – реакция направлена вдоль стержня; з) "глухая" заделка (вмурованная балка) – возникает произвольно направленная реакция – сила и реактивный момент, также неизвестный по направлению. Реакция раскладывается на две составляющие.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 1083; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.123.194 (0.011 с.)