Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Структура общего решения линейного неоднородного дифференциального уравнения.Содержание книги
Поиск на нашем сайте
Для линейного неоднородного дифференциального уравнения n- го порядка y (n) + a 1(x) y (n- 1) +... + an- 1 (x) y ' + an (x) y = f(x), где y = y (x) — неизвестная функция, a 1(x), a 2(x),..., an- 1(x), an (x), f (x) — известные, непрерывные, справедливо: Для отыскания частных решений неоднородных дифференциальных уравнений с постоянными коэффициентами с правыми частями вида: Метод подбора, или метод неопределенных коэффициентов, состоит в следующем. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами с правой частью специального вида. Метод неопределенных коэффициентов. Дифференциальное уравнение вида (1) где , f - известная функция, называется линейнымдифференциальным уравнением n - го порядка с постоянными коэффициентами. Если , то уравнение (1) называется однородным, в противном случае - неоднородным. Для линейных неоднородных уравнений с постоянными коэффициентами и с правой частью специального вида, а именно состоящей из сумм и произведений функций , частное решение можно искать методом неопределенных коэффициентов. Вид частного решения зависит от корней характеристического уравнения. Ниже представлена таблица видов частных решений линейного неоднородного уравнения с правой частью специального вида.
Комплексная плоскость. Модуль и аргумент комплексного числа. Главное значение аргумента. Геометрический смысл Комплексные числа записываются в виде: a+ bi. Здесь a и b – действительные числа, а i – мнимая единица, т.e. i 2 = –1. Число a называется абсциссой, a b – ординатой комплексного числа a+ bi. Два комплексных числа a+ bi и a – bi называются сопряжёнными комплексными числами.
Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой: Здесь точка A означает число –3, точка B – число 2, и O – ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a+ bi будет представлено точкой Р с абсциссой а и ординатой b (см. рис.). Эта система координат называется комплексной плоскостью. Модулем комплексного числа называется длина вектора OP, изображающего комплексное число на координатной (комплексной) плоскости. Модуль комплексного числа a+ bi обозначается | a+ bi | или буквой r и равен: Сопряжённые комплексные числа имеют одинаковый модуль. __ Аргумент комплексного числа - это угол между осью OX и вектором OP, изображающим это комплексное число. Отсюда, tan = b / a.
|
||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 285; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.119.77 (0.011 с.) |