Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Распределенная автоматизированная система управления пароснабжением на базе динамической программной моделиСодержание книги
Поиск на нашем сайте
Для повышения эффективности демпфирования переменной нагрузки вакууматора и выработки пара котлами ОКГ разработана распределенная система автоматического управления пароснабжением, включающая локальные системы автоматического регулирования (САР) на источниках и потребителях пара. При этом, так как локальные САР должны работать на единую цель – обеспечение инвариантности системы пароснабжения к переменной нагрузке вакууматора и выработке пара котлами ОКГ при максимальном повышении уровня пароснабжения станции ST-3, возникла необходимость координации их работы. Одним из способов координации данных систем является использование оперативного диспетчерского управления с использованием программы эффективного планирования пароснабжения промплощадки, основанной на математической модели паровой сети. С этой целью была разработана математическая модель системы пароснабжения промплощадки ККЦ.
Рис. 2.3. Видеокадр моделирования пароснабжения промплощадки ККЦ
Рис. 2.4. Пример экранной формы АРМ диспетчеров пароснабжения промплощадки
Отличительной особенностью разработанной модели является учет гидродинамики паровых потоков, связанных с аккумулирующей способностью труб, и наличие пароаккумуляторов, что позволяет учитывать не только статические, но и динамические режимы пароснабжения при переменных нагрузках, а также регулирующих воздействиях от диспетчера и автоматических систем. Видеокадр моделирования режима пароснабжения рассматриваемой системы с использованием разработанной динамической модели представлен на рис. 2.3. Анализ результатов моделирования режимов пароснабжения и фактических данных эксплуатации показал, что разработанная модель адекватно отражает процессы пароснабжения станции ST-3 в различных режимах работы источников и потребителей пара с достаточной для практического использования точностью. Реализация разработанного подхода к оперативному управлению пароснабжением промплощадки ККЦ предполагает установку на каждом источнике и основных потребителях пара автоматизированных рабочих мест (АРМ) диспетчеров с экранной формой, пример которой приведен на рис. 2.4. В левой части экранной формы показаны выработки пара источниками, а именно ПВЭС н.2, ЦЭС, котельной №2 и котлами ОКГ; в правой – потребление пара вакууматором, станцией ST-3, ЛПЦ 6-8, сетевыми бойлерами и деаэраторами энергокорпуса. В центральной части расположен график изменения и прогноза ресурса пара в системе и пороговый уровень ресурса пара, поддержание которого необходимо для обеспечения требуемых параметров пара у потребителей. Ниже расположены фактические и прогнозные графики включения вакууматора и котлов ОКГ.
На основе использования программной модели в реальном времени рассчитывается ресурс пара в системе и его прогноз в зависимости от параметров и режимов источников и потребителей пара. Программная модель использует в качестве исходных данных фактические значения параметров пара на источниках и потребителях, получаемые из существующей АСУ. Результаты расчетов по сети передаются на АРМ диспетчеров, включая диспетчера, контролирующего работу вакууматора и котлов ОКГ. В результате каждый из диспетчеров получает возможность контролировать не только текущие значения параметров, но и прогнозируемые значения, полученные с помощью модели. В итоге алгоритм управления системой пароснабжения может быть представлен следующим образом. Диспетчер вакууматора формирует упреждающий сигнал о начале плавки, который одновременно отображается на АРМ всех указанных источников и потребителей. Также формируется упреждающий сигнал, представляющий собой прогноз включения котлов ОКГ. На основании данных сигналов с помощью динамической модели рассчитываются прогнозные значения ресурса пара в системе, позволяющие другим источникам и потребителям пара выполнить необходимые возможные действия по изменению режимов пароснабжения с тем, чтобы не допустить снижения ресурса пара в системе ниже минимального порогового уровня, обеспечивающего максимальную выработку электроэнергии на станции ST-3. Таким образом, реализуется распределенное оперативное управление пароснабжением, при котором каждый из элементов системы может видеть состояние системы в целом, состояние и влияние каждого элемента, в том числе свое влияние на работу системы в целом. Эффективное управление сложными техническими системами, например, системами пароснабжения крупных производственных предприятий, требует получения достоверной прогнозной информации о состоянии системы на основе использования динамической программной модели.
Для реализации оперативного управления системой пароснабжения промплощадки ККЦ ОАО «ММК» разработана математическая программная модель. Особенностью модели является учет гидродинамики паровых потоков, связанных с аккумулирующей способностью труб и паровых аккумуляторов, что позволяет учитывать не только статические, но и динамические режимы пароснабжения при переменных нагрузках, а также регулирующих воздействиях от диспетчера и автоматических систем. Апробация модели на базе данных диспетчерского управления показала целесообразность ее применения для целей анализа режимов и выбора оптимальных вариантов регулирования пароснабжения. Предложенный подход к управлению пароснабжением промплощадки ККЦ ОАО «ММК», основанный на использовании динамической программной модели, может быть использован для оперативного управления потоками энергетических ресурсов в других производственных сетях с учетом динамики их выработки, аккумулирования и потребления. 3. Автоматизированная система диспетчерского управления теплоснабжением зданий на основе полевых технологий[20] В настоящее время базовым подходом для регулирования теплоснабжения на стороне потребителей является внедрение автоматизированных индивидуальных тепловых пунктов (АИТП) зданий. На основе внедрения АИТП решаются следующие задачи: 1. Вводится качественно-количественное регулирование потребления тепла, благодаря которому потребитель получает возможность отбирать то количество тепла, которое ему необходимо. При отсутствии же регулирования продавец тепла фактически диктует потребителю, какое количество тепла тот должен у него купить. Для рыночной экономики такая ситуация является неприемлемой. Кроме того, многие тепловые сети гидравлически разрегулированы, работают с пониженными температурными графиками. Внедрение АИТП позволяет адаптировать потребителей к этим условиям. 2. На основе использования АИТП можно оптимизировать режимы теплопотребления. Оптимизация состоит в том, что при заданном уровне комфортности потребителей можно значительно сократить потребление тепла за счет рационального регулирования тепловой нагрузки. Составляющими тепловой нагрузки для административно-бытовых и жилых зданий являются отопление, горячее водоснабжение (ГВС) и вентиляция, а для производственных – дополнительно технологическая нагрузка. Для подавляющего большинства потребителей в настоящее время не осуществляется связного регулирования нагрузок, состоящего в рациональном перераспределении тепла. Сказанное можно наглядно продемонстрировать на примере потребителей, имеющих нагрузку ГВС. В существующих схемах включения подогревателей ГВС без автоматического регулирования при снижении температуры наружного воздуха увеличивается подача тепла на отопление и одновременно на систему ГВС. В итоге, когда на улице мороз и наблюдается дефицит тепла на отопление из кранов ГВС идет «кипяток», т.е. происходит нерациональное расходование тепловой энергии. Другим фактором, особенно существенным для параллельного включения нагрузки ГВС, является повышение температуры обратного теплоносителя, что говорит о низкой эффективности работы систем теплопотребления. Проведенные обследования реальных промышленных объектов показали, что в ряде случаев температурный перепад между подаваемым и обратным теплоносителем до установки автоматики составлял менее 5 оС. Введение автоматического регулирование и автоматизированного диспетчерского управления теплоснабжением зданий позволило решить указанные проблемы и получить ощутимую экономию как на жилых, так и на промышленных объектах.
Структура и функции АСДУ Укрупненная структурная схема автоматизированной системы диспетчерского управления (АСДУ) инженерными системами зданий, приведена на рис 3.1.
Рис.3.1. Структура АСДУ теплоснабжением зданий
АСДУ включает в себя на верхнем уровне рабочую станцию диспетчера, на нижнем уровне – тепловые пункты зданий, оснащенные системами сбора информации и автоматического регулирования процессов теплоснабжения. Основными задачами внедрения АСДУ являются: – снижение объемов потребления тепла за счет устранения нерационального его использования, особенно в ночные часы системами ГВС, и в осенне-весенний период системами отопления жилых зданий; – обеспечения требуемых параметров теплоснабжения жилых зданий, повышения качества теплоснабжения и уровня комфортности у потребителей, в том числе при низких температурах наружного воздуха в зимний период. АСДУ выполняет следующие функции: - пофасадное качественно-количественное регулирование отопления зданий в зависимости от температуры наружного воздуха; - двухрежимное регулирование горячего водоснабжения зданий, предусматривающее снижение температуры горячей воды в ночные часы и ее повышение в часы максимального водоразбора; - задание режимов работы систем отопления и ГВС с операторской станции диспетчера; - отображение на операторской станции текущих значений температур, расходов и давлений теплоносителя на тепловых вводах зданий, значений текущего и суммарного теплопотребления; - контроль доступа в помещения тепловых пунктов; - контроль и автоматическое отключение силового оборудования в случае затопления тепловх пунктов; - ведение истории процесса, протоколирование событий; - просмотр и печать отчётов, просмотр трендов.
|
|||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 364; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.35.234 (0.012 с.) |