Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Строительные стали и алюминиевые сплавы. Нормативные и расчетные сопротивления, коэффициенты надежности.

Поиск

Строительные стали и алюминиевые сплавы. Нормативные и расчетные сопротивления, коэффициенты надежности.

Конструкционные строительные стали по химическому составу относятся к низкоуглеродистым и низколегированным, а в равновесном состоянии — к доэвтектоидным. Кроме комплекса высоких механических свойств, определяемых при стандартных испытаниях, они должны иметь высокую конструктивную прочность, т.е. соответствовать свойствам конкретных изделий и конструкций. К свойствам стали, определяющим надежность конструкций, относятся коэффициенты интенсивности напряжений и деформации, ударная вязкость и температура порога хладноломкости и долговечности — сопротивление усталости, коррозии и износу. Кроме того, конструкционные стали должны легко обрабатываться давлением, резанием, хорошо свариваться, прокаливаться, иметь малую склонность к деформациям, короблению и трещинообразованию при закалке.

Углеродистые стали выпускают обыкновенного и повышенного качества, по степени раскисления — спокойные (сп), полуспокойные (пс) и кипящие (кп). Спокойные стали полностью раскислены и содержат минимальное количество оксида железа (FeO), кипящие не-раскислены. Полуспокойные занимают промежуточное положение. Кипящие стали склонны с старению, хладноломкости, хуже свариваются, но пластичны.

Углеродистые стали обыкновенного качества в зависимости от гарантируемых свойств объединены в группы А, Б и В. Стали обозначают марками Ст1, Ст2, СтЗ, Ст4, Ст5, Ст6, спереди добавляется буква группы стали, а после — индекс степени раскисления, (сп, пс и кп), например, АСтЗсп, ВСт4пс. По группе А стали поставляют с гарантированными механическими свойствами, по группе Б — химическими и по группе В — с теми и другими одновременно. С увеличением номера стали растет содержание углерода.

Сталь для строительных конструкций, учитывая указанные требования к ней, заказывается по группе ВСтЗсп (пс) и ВСтЗГпс. Она содержит обычно углерода 0,14 — 0,22%, марганца 0,4 — 0,65 %, кремния 0,05-0,17 % (сп) или 0,12-0,3 % (пс). Сталь марки ВСтЗГпс содержит марганца 0,8 — 1,1 % и кремния до 0,15 %.

В зависимости от температурных условий эксплуатации и назначения конструкций по требованиям ударной вязкости углеродистые стали разделены на шесть категорий. Кипящая сталь изготовляется по 2-й категории ВСтЗкп2, полуспокойная — по 6-й ВСтЗпсб, спокойная и полуспокойная с повышенным содержанием марганца — по 5-й категории ВСтЗсп5 и ВСтЗГпс5. Категория стали, как видно из приведенных данных, указывается в конце режима и условий работы и эксплуатации. Все виды стальных строительных конструкций разделены на четыре группы. За нормативные сопротивления стали принимают значения предела текучести или временного сопротивления (для сталей и сплавов высокой прочности при отсутствии площадки текучести) с обеспеченностью соответственно 0,95 или 0,995.

К первой группе отнесены сварные конструкции, работающие в особо тяжелых условиях динамического нагружения (эстакады, подкрановые балки, и др.). Для этих конструкций применяют высокопрочные низколегированные стали 18Г2АФпс, 12ГН2 МФАЮ, а также ВСтЗГпс5, 09ГС12.

Ко второй группе отнесены сварные конструкции, работающие на статическую нагрузку, — фермы, ригели, рамы, балки перекрытий и покрытий и др. Для этих конструкций рекомендуются низкоуглеродистые и низколегированные стали повышенной и высокой прочности — ВСтЗсп5, 091Г2С, 10ХСНД и др.

К третьей группе отнесены сварные конструкции, работающие преимущественно на сжатие, — колонны, стойки, опоры под оборудование и др. Для них могут использоваться наряду с указанными для второй группы низкоуглеродистые стали ВСтЗкп2.

В четвертую группу включены вспомогательные конструкции и элементы (связи, фахверк, лестницы, ограждения и др.). Для них рекомендуются обычные низкоуглеродистые кипящие, полуспокойные и спокойные стали группы ВСтЗкп(пс, сп)2(5).

Алюминиевые сплавы представляют собой двойные, тройные и более сложные системы с различной растворимостью компонентов в твердом состоянии. Для упрощения маркировки в обозначении некоторых сплавов, кроме алюминия, с помощью букв отражается еще один элемент (основной компонент), а цифрами - его процентное содержание; АМц - алюминиево-марганцевый сплав. АМг - алюминиево-магниевый. АВ - алюминиево-кремниевый (авиаль). Д - дуралюмин. В - высокопрочный сплав.

В маркировке сплавов после цифр могут быть еще буквы, которые обозначают состояние поставки проката или листа, то есть вид механической или термической обработки металла.

Буквенные обозначения механической и термической обработки алюминиевых сплавов (состояние поставки): П - полунагартованные. Н - нагартованные. М - отожженные. Т - закаленные и естественно состаренные. TI - закаленные и искусственно состаренные.

Деформируемые сплавы разделяют на две группы: термически необрабатываемые и термически обрабатываемые.

Термически неупрочняемые алюминиевые сплавы

а) А л ю м и н и е в о - м а р г а н ц е в ы й с п л а в АМц

Содержит 1-1,6%. марганца. Сплав имеет низкий предел прочности - 11-17 кг/мм2. Сваривается. Как правило, используется для ограждающих конструкций.

б) А л ю м и н и е в о - м а г н и е в ы й сплав АМг-6Т.

По стойкости против коррозии алюминиево-магниевые сплавы занимают первое место после технически чистого алюминия. Хорошо свариваются. Применяются для листовых и для сварных стержневых конструкций.

Наибольшее распространение из алюминиево-магниевых сплавов получил в строительстве сплав АМг-6Т, который содержит около 6% магния и до 0,2% титана (что в марке сплава обозначено буквой Т). Предел прочности АМг-6Т -32 кг/мм2 и относительное удлинение- 15%.-

Может быть рекомендован для изготовления ответственных сварных конструкций, так как при сварке теряет прочность незначительно.

Общими свойствами группы термически необрабатываемых сплавов являются: невысокая прочность и хорошая свариваемость. Для повышения прочности листов, изготовляемых из сплавов этой группы, применяется полунагартовка.

Физические и механические свойства.

Пористость пластмасс можно регулировать в процессе их производства в широких пределах. Так, полимерные пленки, линолеум, стеклопластики практически не имеют пор, а пористость пенопластов может достигать 95...98%. Поэтому средняя плотность пластмасс может быть близка к истинной плотности — у непористых пластмасс или снижается до 50...10 кг/м3 — у газонаполненных пластмасс.

Водопоглощение пластмасс очень мало и не превышает для плотных пластмасс 3 %. Большинство пластмасс обладает значительной водостойкостью и стойкостью к водным растворам солей, кислот и щелочей.

Теплостойкость большинства пластмасс невысока (1ОО...2ОО°С), но отдельные виды пластмасс (фторопласт, кремшшорганические полимеры) выдерживают нагрев до ЗОО...5ОО°С.

Теплопроводность (0,23...0,7 Вт/(м-°С) пластмасс низкая, а у газонаполненных пластмасс она близка к теплопроводности воздуха. Отличительной особенностью пластмасс является высокий (в 5... 10 раз выше, чем у других строительных материалов) коэффициент теплового расширения. Это обстоятельство необходимо учитывать при использовании пластмасс, особенно в сочетании с другими материалами,

Прочность некоторых пластмасс значительна и у конструкционных пластмасс, таких, как стеклопластик, может достигать 200...300 МПа. При этом характерной особенностью пластмасс, отличающих их от каменных материалов, является то, что прочность при растяжении и изгибе у них почти такая же, как при сжатии (у каменных материалов σр= (0,2...0,1) σСж). Благодаря высокой прочности и малой плотности коэффициент конструктивного качества у пластмасс намного выше, чем у большинства традиционных строительных материалов.

Модуль упругости у пластмасс приблизительно в 10 раз ниже, чем у бетона и стали. Это наряду с характерной для полимерных материалов ползучестью предопределяет их высокую деформативность.

Статически неопределимые стержневые системы, определение степени статической неопр-ти, св-ва статически неопределимых систем. Сущность метода сил. Основные способы проверки правильности построения эпюр.

Стержневые системы - системы, состоящие из отдельных, обычно прямолинейных, соединенных между собой в узлах с помощью сварки, заклепок, болтов и других скреплений; одним из таких видов систем являются плоские фермы.

При расчете статически неопределимых рам определяют реакции опорных связей и внутренних усилий. Они принимаются за неизвестные. Если уравнений статики недостаточно для определения этих неизвестных, то система статически неопределима.

Свойства стат. неопределимых систем:

- распределение усилий между элементами зависит от материала этих элементов и их размеров;

- изменение температуры, смещение опорных связей, неточность изготовления элементов и последующей сборки все это приводит к появлению дополнительных усилий и напряжений.

Расчет статически неопределимых систем начинают с определения статической неопределимости – это число лишних связей, удаление которых превращает заданную стат. неопределимую раму в стат. определимую и геометрически неизменяемую.

Для рам степень статической неопределимости:

n=3m – Ш, Ш – число простых шарниров (соединяет 2 стержня или 2 диска);

m – число замкнутых контуров в системе в предположении отсутствия шарнирных соединений;

Задана стат. неопределимая рама. n=3*2 – 3 = 3 раза стат. неопределима.

Раскрытие статической неопределимости любой рамы методом сил начинается с отбрасывания дополнительных связей. Система, освобожденная от дополнительных связей, становится статически определимой. Она носит название основной системы.

Основная система метода сил – это статически определимая и геометрически неизменяемая система, полученная из заданной системы удалением лишних связей.

После того как дополнительные связи отброшены и система превращена в статически определимую, необходимо ввести вместо связей неизвестные силовые факторы. В тех сечениях, где запрещены линейные перемещения, вводятся силы. Там, где запрещены угловые смещения, вводятся моменты. Как в том, так и в другом случае неизвестные силовые факторы обозначают Xi-, где i — номер неизвестного. Наибольшее значение i равно степени статической неопределимости системы. Заметим, что для внутренних связей силы Xi, — являются взаимными. Если в каком-либо сечении рама разрезана, то равные и противоположные друг другу силы и моменты прикладываются как к правой, так и к левой частям системы.

Эквивалентная система – это основная система, загруженная реакциями отброшенных связей и заданной нагрузкой. Она д. б. тождественна заданной раме статически (внутр. силы одинаковы) и кинематически (перемещение точек д. б. одинаковыми)

Теперь составим уравнения совместности перемещений:

1(x1,x2,x3,х4,Р)=0

2(x1,x2,x3,х4,Р)=0 – первый индекс направление перемещения, второй – причина перемещения

3(x1,x2,x3,х4,Р)=0

4(x1,x2,x3,х4,Р)=0

Применяем принцип независимости сил и их сложения:

1(x1,x2,x3,х4,Р)= 1(x1)+ 1(x2)+ 1(x3) + 1(x4) + 1(Р)=0

1(x1)= 11*x1 – принцип пропорциональности, где 11 – перемещение по направлению x1, от действия x1=1; 1(x2)= 12*x2 и т. д.

Записываем канонические уравнения метода сил. Число уравнений равно степени статич. неопределимости. Каждое уравнение это отрицание перемещений по направлению отброшенных связей.

11 x1+ 12 x2+ 13 x3+ 14 x4+ 1(Р)=0 – канн. ур., отрицание перемещ. по направл. x1.

21 x1+ 22 x2+ 23 x3+ 24 x4+ 2(Р)=0

31 x1+ 32 x2+ 33 x3+ 34 x4+ 3(Р)=0

41 x1+ 42 x2+ 43 x3+ 44 x4+ 4(Р)=0

Далее решаем каноническое уравнение. Для этого основную систему загружаем по отдельности единичными неизвестными по отдельности и строим эпюра единичных изгибаемых моментов. Находим коэффициенты при неизвестных:

ik= ; i(Р)=

Строим эпюру изгибающих моментов для заданной рамы:

М= Х1+ Х2+ Х3+ Х4р

Способы проверки. Окончательная эпюра моментов проверяется дважды статически (явл. необходимой, но недостаточной) и кинематически.

Статическая – любой узел рамы должен находиться в равновесии, т. е. сумма моментов любого узла =0.

Кинематическая – проверяется отсутствие перемещений по направлению неизвестных (отброшенных связей). Сколько неизвестных столько и проверок:

1= ; 2=

Можно сделать суммарную проверку, т.е. отсутствие перемещений по направлению сразу всех неизвестных:

1+ М1+ М2+ М3; =

 

ПОЯСНЕНИЕ ОСНОВНЫХ ПОНЯТИЙ

1. Предельные состояния - состояния, при которых конструкция, основание (здание или сооружение в целом) перестают удовлетворять заданным эксплуатационным - требованиям или требованиям при производстве работ (возведении).

2. Эксплуатация здания или сооружения - использование здания или сооружения по функциональному назначению с проведением необходимых мероприятий по сохранению состояния конструкций, при котором они способны выполнять заданные функции с параметрами, установленными требованиями технической документации.

3. Нормальная эксплуатация - эксплуатация, осуществляемая (без ограничений) в соответствии с предусмотренными в нормах или заданиях на проектирование технологическими или бытовыми условиями.

4. Надежность строительного объекта - свойство строительного объекта выполнять заданные функции в течение требуемого промежутка времени.

5. Обеспеченность значения величины - для случайных величин, для которых неблагоприятным является превышение какого-либо значения - вероятность непревышения этого значения; а для которых неблагоприятным является занижение - вероятность незанижения.

6. Силовое воздействие - воздействия, под которыми понимаются как непосредственные силовые воздействия от нагрузок, так и воздействия от смещения опор, измерения температур, усадки и других подобных явлений, вызывающих реактивные силы.

7. Нагрузочный эффект - усилия, напряжения, деформация, раскрытия трещин, вызванные силовыми воздействиями.

8. Расчетная ситуация - учитываемый в расчете комплекс условий, определяющих расчетные требования к конструкциям.

 

10. Классификация нагрузок в соответствии со СНиП "Нагрузки и воздействия. Нормы проектирования". Сочетания нагрузок.

1.1. При проектировании следует учитывать нагрузки, возникающие при возведении и эксплуатации сооружений, а также при изготовлении, хранении и перевозке строительных конструкций.

1.2. Основными характеристиками нагрузок, установленными в настоящих нормах, являются их нормативные значения.

Нагрузка определенного вида характеризуется, как правило, одним нормативным значением. Для нагрузок от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий, от мостовых и подвесных кранов, снеговых, температурных климатических воздействий устанавливаются два нормативных значения: полное и пониженное (вводится в расчет при необходимости учета влияния длительности нагрузок, проверке на выносливость и в других случаях, оговоренных в нормах проектирования конструкций и оснований).

1.3. Расчетное значение нагрузки следует определять как произведение ее нормативного значения на коэффициент надежности по нагрузке , соответствующий рассматриваемому предельному состоянию и принимаемый:

 

а) при расчете на прочность и устойчивость - в соответствии с пп. 2.2, 3.4, 3.7, 3.11, 4.8, 5.7, 6.11, 7.3 и 8.7;

б) при расчете на выносливость - равным единице;

в) в расчетах по деформациям - равным единице, если в нормах проектирования конструкций и оснований не установлены другие значения;

г) при расчете по другим видам предельных состояний - по нормам проектирования конструкций и оснований.

Расчетные значения нагрузок при наличии статистических данных допускается определять непосредственно по заданной вероятности их превышения.

При расчете конструкций и оснований для условий возведения зданий и сооружений расчетные значения снеговых, ветровых, гололедных нагрузок и температурных климатических воздействий следует снижать на 20%.

При необходимости расчета на прочность и устойчивость в условиях пожара, при взрывных воздействиях, столкновении транспортных средств с частями сооружений коэффициенты надежности по нагрузке для всех учитываемых при этом нагрузок следует принимать равными единице.

Примечание. Для нагрузок с двумя нормативными значениями соответствующие расчетные значения следует определять с одинаковым коэффициентом надежности по нагрузке (для рассматриваемого предельного состояния).

КЛАССИФИКАЦИЯ НАГРУЗОК

1.4. В зависимости от продолжительности действия нагрузок следует различать постоянные и временные (длительные, кратковременные, особые) нагрузки.

1.5. Нагрузки, возникающие при изготовлении, хранении и перевозке конструкций, а также при возведении сооружений, следует учитывать в расчетах как кратковременные нагрузки.

Нагрузки, возникающие на стадии эксплуатации сооружений, следует учитывать в соответствии с пп. 1.6 - 1.9.

1.6. К постоянным нагрузкам следует относить:

а) вес частей сооружений, в том числе вес несущих и ограждающих строительных конструкций;

б) вес и давление грунтов (насыпей, засыпок), горное давление.

Сохраняющиеся в конструкции или основании усилия от предварительного напряжения следует учитывать в расчетах как усилия от постоянных нагрузок.

1.7. К длительным нагрузкам следует относить:

а) вес временных перегородок, подливок и подбетонок под оборудование;

б) вес стационарного оборудования: станков, аппаратов, моторов, емкостей, трубопроводов с арматурой, опорными частями и изоляцией, ленточных конвейеров, постоянных подъемных машин с их канатами и направляющими, а также вес жидкостей и твердых тел, заполняющих оборудование;

в) давление газов, жидкостей и сыпучих тел в емкостях и трубопроводах, избыточное давление и разрежение воздуха, возникающее при вентиляции шахт;

г) нагрузки на перекрытия от складируемых материалов и стеллажного оборудования в складских помещениях, холодильниках, зернохранилищах, книгохранилищах, архивах и подобных помещениях;

д) температурные технологические воздействия от стационарного оборудования;

е) вес слоя воды на водонаполненных плоских покрытиях;

ж) вес отложений производственной пыли, если ее накопление не исключено соответствующими мероприятиями;

з) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с пониженными нормативными значениями, приведенными в табл. 3;

и) вертикальные нагрузки от мостовых и подвесных кранов с пониженным нормативным значением, определяемым умножением полного нормативного значения вертикальной нагрузки от одного крана (см. п. 4.2) в каждом пролете здания на коэффициент: 0,5 - для групп режимов работы кранов 4К-6К; 0,6 - для группы режима работы кранов 7К; 0,7 - для группы режима работы кранов 8К. Группы режимов работы кранов принимаются по ГОСТ 25546-82;

к) снеговые нагрузки с пониженным расчетным значением, определяемым умножением полного расчетного значения на коэффициент 0,5;

л) температурные климатические воздействия с пониженными нормативными значениями, определяемыми в соответствии с указаниями пп. 8.2-8.6 при условии q1 = q2 = q3 = q4 = q5 = 0, DI = DVII = 0;

м) воздействия, обусловленные деформациями основания, не сопровождающимися коренным изменением структуры грунта, а также оттаиванием вечномерзлых грунтов;

н) воздействия, обусловленные изменением влажности, усадкой и ползучестью материалов.

Примечание. В районах со средней температурой января минус 5 °С и выше (по карте 5 приложения 5 к СНиП 2.01.07-85*) снеговые нагрузки с пониженным расчетным значением не устанавливаются.

1.8. К кратковременным нагрузкам следует относить:

а) нагрузки от оборудования, возникающие в пускоостановочном, переходном и испытательном режимах, а также при его перестановке или замене;

б) вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудования;

в) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с полными нормативными значениями, кроме нагрузок, указанных в п. 1.7, а, б, г, д;

г) нагрузки от подвижного подъемно-транспортного оборудования (погрузчиков, электрокаров, кранов-штабелеров, тельферов, а также от мостовых и подвесных кранов с полным нормативным значением);

д) снеговые нагрузки с полным расчетным значением;

е) температурные климатические воздействия с полным нормативным значением;

ж) ветровые нагрузки;

з) гололедные нагрузки.

1.9. К особым нагрузкам следует относить:

а) сейсмические воздействия;

б) взрывные воздействия;

в) нагрузки, вызываемые резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования;

г) воздействия, обусловленные деформациями основания, сопровождающимися коренным изменением структуры грунта (при замачивании просадочных грунтов) или оседанием его в районах горных выработок и в карстовых.

СОЧЕТАНИЯ НАГРУЗОК

1.10. Расчет конструкций и оснований по предельным состояниям первой и второй групп следует выполнять с учетом неблагоприятных сочетаний нагрузок или соответствующих им усилий.

Эти сочетания устанавливаются из анализа реальных вариантов одновременного действия различных нагрузок для рассматриваемой стадии работы конструкции или основания.

1.11. В зависимости от учитываемого состава нагрузок следует различать:

а) основные сочетания нагрузок, состоящие из постоянных, длительных и кратковременных;

б) особые сочетания нагрузок, состоящие из постоянных, длительных, кратковременных и одной из особых нагрузок.

Временные нагрузки с двумя нормативными значениями следует включать в сочетания как длительные - при учете пониженного нормативного значения, как кратковременные - при учете полного нормативного значения.

В особых сочетаниях нагрузок, включающих взрывные воздействия или нагрузки, вызываемые столкновением транспортных средств с частями сооружений, допускается не учитывать кратковременные нагрузки, указанные в п. 1.8.

1.12. При учете сочетаний, включающих постоянные и не менее двух временных нагрузок, расчетные значения временных нагрузок или соответствующих им усилий следует умножать на коэффициенты сочетаний, равные:

в основных сочетаниях для длительных нагрузок y1 = 0,95; для кратковременных y2 = 0,9;

в особых сочетаниях для длительных нагрузок y1 = 0,95; для кратковременных y2 = 0,8, кроме случаев, оговоренных в нормах проектирования сооружений для сейсмических районов и в других нормах проектирования конструкций и оснований. При этом особую нагрузку следует принимать без снижения.

При учете основных сочетаний, включающих постоянные нагрузки и одну временную нагрузку (длительную или кратковременную), коэффициенты y1, y2 вводить не следует.

Примечание. В основных сочетаниях при учете трех и более кратковременных нагрузок их расчетные значения допускается умножать на коэффициент сочетания y2, принимаемый для первой (по степени влияния) кратковременной нагрузки - 1,0, для второй - 0,8, для остальных - 0,6.

1.13. При учете сочетаний нагрузок в соответствии с указаниями п. 1.12 за одну временную нагрузку следует принимать:

а) нагрузку определенного рода от одного источника (давление или разрежение в емкости, снеговую, ветровую, гололедную нагрузки, температурные климатические воздействия, нагрузку от одного погрузчика, электрокара, мостового или подвесного крана);

б) нагрузку от нескольких источников, если их совместное действие учтено в нормативном и расчетном значениях нагрузки (нагрузку от оборудования, людей и складируемых материалов на одно или несколько перекрытий с учетом коэффициентов y A и y n, приведенных в пп. 3.8 и 3.9; нагрузку от нескольких мостовых или подвесных кранов с учетом коэффициента y, приведенного в п. 4.17; гололедно-ветровую нагрузку, определяемую в соответствии с п. 7.4).

 

Требования, предъявляемые к гражданским и промышленным зданиям.

Классификация зданий по назначению:

Гражданские(жилые; общественные); промышленные; сельскохозяйственные;

Основные требования к зданиям:

функциональная и технологическая целесообразность;

техническая целесообразность (здания должны быть прочными, долговечными, защищать от вредных воздействий);

архитектурно-художественная выразительность;

экономическая целесообразность.

Помещения – основной структурный элемент или часть здания. Соответствие помещения функциональному назначению достигается, когда сред в помещении отвечает требованиям выполняемой функции. Качество среды зависит от следующих факторов:

микроклимат (состояние воздушной среды, температура воздуха, влажность, запас воздуха, проветриваемость и др.)

световой режим (степень освещённости, цветовые характеристики среды и т.д.);

звуковой режим (условия слышимости (акустика), защита от шумов и т.д.);

видимость и зрительное восприятие предметов.

Требования к помещениям приводятся в СНиПах.

Здание должно воспринимать различные нагрузки:

силовые (постоянные, длительные, кратковременные, статические, динамические, особые);

несиловые:

температурные, атмосферные (грунтовая влага), движение воздуха (ветер, инфильтрация); лучистую энергию солнца; воздействие агрессивных химических примесей; биологические воздействия;

воздействия звуковой энергии.

В соответствии с перечисленными воздействиями к зданию и его конструкциям предъявляют комплекс технических требований:

прочность; устойчивость, жёсткость; долговечность (ползучесть, морозостойкость, коррозионная стойкость, биостойкость);

пожарная безопасность:

а) сумма мероприятий, которая уменьшает возможность возникновения пожара;

б) безопасность людей в момент возникновения пожара.

По степени возгораемости: несгораемые, трудносгораемые, сгораемые. Степень возгораемости характеризуется пределом огнестойкости – время в часах, за которое конструкция сопротивляется, т.е. не появляются сквозные трещины, температура снаружи не превышает 140 ОС.

ТЭП проектных решений:

объёмно-планировочные показатели:

площадь застройки; строительный объём; общая площадь; полезная (рабочая или жилая) площадь; этажность; высота этажа; планировочный коэффициент (Sраб/Sобщ*100%)

коэффициент рациональности использования строительного объёма (Vстр/Sобщ*100%);

коэффициент компактности (Sнаруж. огажд./ Sобщ*100%);

экономические показатели:

сметная стоимость СМР; общая сметная стоимость здания; структура сметной стоимости (СССМР/ССзд-я*100%); приведённые затраты; срок окупаемости; продолжительность строительства; выработка одного рабочего; расход основных строительных материалов; масса здания; годовые эксплуатационные расходы по содержанию жилого фонда; годовые эксплуатационные расходы по содержанию гражданских зданий;

затраты на отопление здания в год; затраты на эл. энергию в год; срок службы (долговечность) в годах;

стоимость капитального ремонта; затраты на полное восстановление или реновацию; затраты на водоснабжение и водоотведение; затраты на эксплуатацию внутриквартальных дорог и коммуникаций.

 

Производство каменных работ в зимнее время: метод замораживания, применения противоморозных химических добавок, обогрева. Требования по технике безопасности.

Каменные работы в зимних условиях ведут на всей территории нашей страны независимо от температуры наружного воздуха. Каменные работы в зависимости от вида кладки и характера ее работы в конструкции можно выполнять в зимнее время различными способами: замораживанием; замораживанием с последующим искусственным полным или частичным оттаиванием кладки; замораживанием с применением растворов с химическими добавками; с использованием паро- или электропрогрева; в тепляках.В зимних условиях кладку из кирпича, керамических н пустотелых камней, легкобетонных и природных камней правильной формы обычно выполняют методом замораживания.Кладку этим методом ведут на открытом воздухе с применением раствора, приготовленного на подогретых материалах (вода, песок). Кирпич и другие каменные материалы не подогревают, но они должны быть очищены от льда и снега. Температура воды для приготовления раствора должна быть не выше 80° С, а песка — не выше 60° С.Приготовление раствора на подогретых материалах необходимо для того, чтобы в момент кладки и до ее замерзания получить достаточно плотное обжатие шва. Твердения же раствора до его замерзания в большинстве случаев не происходит. В связи с этим при возведении каменных конструкций методом замораживания применяют растворы повышенных марок. Температура подогретого раствора (°С) также зависит от температуры наружного воздуха.Так как в период оттаивания происходит осадка кладки, над оконными и дверными блоками, установленными в' стенах, следует оставлять зазоры 3—5 мм. Проемы в стенах более 1,5 м, выкладываемых методом замораживания, как правило, перекрывают перемычками нз сборных элементов. В качестве временных креплений, обеспечивающих устойчивость отдельных конструктивных элементов здания, выложенных способом замораживания, могут применяться металлические подкосы, растяжки и хомуты.Кладка, выполненная методом замораживания и подвергнутая последующему искусственному оттаиванию путем обогрева помещений, имеет значительно меньшую осадку и более высокую прочность и устойчивость в период весеннего оттаивания. Для обогрева помещений мол-сет использоваться система отопления или специально устанавливаемые калориферы. Помещение должно быть изолировано от поступления наружного холодного воздуха, для чего закрывают проемы и отверстия в стенах и перекрытиях и остекляют переплеты оконных коробок. Продолжительность обогрева помещений зависит от необходимой величины влажности кладки для выполнения отделочных работ (обычно не более 8%) и прочности раствора, которую он должен набрать за этот период (не менее 20% от проектной). Для конструкций, возводимых методом замораживания с последующим искусственным обогревом, должен использоваться раствор не ниже марки 25.Введение химических добавок в кладочные растворы понижает температуру их замерзания и тем самым способствует частичному твердению их в зимний период. Применяют следующие химические добавки: поташ, нитрат натрия, хлористый кальций, поваренная соль. Для подземной кладки, выполняемой способом замораживания, разрешается использовать все четыре добавки, а для надземной — только поташ и нитрат натрия. В известково-цемент-ных растворах при введении в них поташа количество извести уменьшают до 20% массы цемента, а температуру раствора принимают близкой к нулю. В этом случае раствор приготовляют на материалах без подогрева. Раствор с химическими добавками должен быть не ниже марки 25.Метод замораживания не допускается применять в следующих случаях: при возведении конструкций, которые в период оттаивания кладки могут испытывать вибрацию или динамические нагрузки; при сооружении тонкостенных и цилиндрических сводов толщиной менее 10 см; при кладке стен и столбов из рваного бутового камня и бутобетона; при устройстве бутовых фундаментов способом «под залив».Электро- и паропрогрев каменной кладки производят в тех случаях, когда при оттаивании она подвергается полным расчетным нагрузкам, в том числе динамическим и вибрационным, и поэтому должна набрать свою расчетную прочность до момента замерзания Прогрев ведется при температуре 30—35° С и напряжении 220— 380 В.Контроль за выполнением кладки в зимних условиях, помимо предусмотренного для кладки в обычных условиях, заключается в трехразовом измерении в течение суток температуры наружного воздуха, температуры раствора в момент его укладки и температуры кладки при ее искусственном подогреве. Правила техники безопасности при производстве каменных работ в зимних условиях.При производстве каменных работ в зимних условиях необходимо соблюдать те же правила техники безопасности, что и при работе в летних условиях. Кроме того, нужно внимательно следить за своевременной очисткой лесов, подмостей и стремянок от снега и наледи, а при необходимости посыпать их песком. Нельзя устанавливать подмостки на не очищенные от снега перекрытия или грунт. Проходы между штабелями материалов и конструкцией следует очищать от снега, при появлении наледи посыпать проходы песком. Нельзя допускать, чтобы материалы и конструкции укладывали на неочищенные от снега площадки, так как это может вызвать не только порчу конструкций, но и несчастные случаи.Пр



Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 891; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.195.142 (0.012 с.)