Основные методы исследований 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные методы исследований



Все разнообразие методов географических исследований сводится к трем категориям: общенаучные, междисциплинарные и специфические для данной науки (по Ф.Н. Милькову, 1990). Важнейшим общенаучным методом является материалистическая диалектика. Ее законы и основные положения о всеобщей связи явлений, единстве и борьбе противоположностей, переходе количественных изменений в качественные, отрицании отрицания составляют методологическую основу географии. С материалистической диалектикой связан и исторический метод. В физической географии исторический метод нашел свое выражение в палеогеографии. Общенаучное значение имеет системный подход к изучаемому объекту. Каждый объект рассматривается как сложное образование, состоящее из структурных частей, взаимодействующих друг с другом.

Междисциплинарные методы – общие для группы наук. В географии это математический, геохимический, геофизический методы и метод моделирования. Для изучения объектов используются количественные характеристики, математическая статистика. В последнее время широко применяется компьютерная обработка материалов. Математический метод – важный метод в географии, но нередко тестирование, запоминание количественных характеристик подменяют развитие творческой, думающей личности. Геохимический и геофизический методы позволяют оценить потоки вещества и энергии в географической оболочке, круговороты, термический и водный режимы.

Модель (метод моделирования) – графическое изображение объекта, отражающее структуру и динамические связи, дающее программу дальнейших исследований. Широкую известность получили модели будущего состояния биосферы Н.Н. Моисеева.

К специфическим методам в географии относятся сравнительно-описательный, экспедиционный, картографический, аэрокосмический.

Сравнительно-описательный и картографический методы – самые старые методы в географии. А. Гумбольдт в «Картинах природы» писал, что сравнивать между собой отличительные особенности природы отдаленных стран и представлять результаты этих сравнений – благодарная задача географии. Сравнение выполняет ряд функций: определяет ареал сходных явлений, разграничивает сходные явления, делает незнакомое знакомым. Выражением сравнительно-описательного метода служат различного рода изолинии – изотермы, изогипсы, изобары и т.д. Без них невозможно представить ни одной отраслевой или комплексной научной дисциплины физико-географического цикла.

Наиболее полное и разностороннее применение сравнительно-описательный метод находит в страноведении.

Экспедиционный метод исследования называют полевым. Полевой материал, собранный в экспедициях, составляет хлеб географии, ее фундамент, опираясь на который только и может развиваться теория.

Экспедиции как метод сбора полевого материала берут начало с античных времен. Геродот в середине 5 века до н.э. совершил многолетнее путешествие, давшее ему необходимый материал по истории и природе посещенных стран. В своем девятитомном труде «История» он описал природу, население, религию многих стран (Вавилон, Малая Азия, Египет), привел данные о Черном море, Днепре, Доне. Далее следует эпоха Великих географических открытий – путешествия Колумба, Магеллана, Васко да Гаммы и др.). В один ряд с ними следует поставить Великую Северную экспедицию в России (1733–1743), цель которой заключалась в исследовании Камчатки (изучена природа Камчатки, открыт северо-запад Северной Америки, описано побережье Северного Ледовитого океана, нанесена на карту крайняя северная точка Азии – мыс Челюскин). Глубокий след в истории отечественной географии оставили Академические экспедиции 1768–1774 гг. Они были комплексными, в их задачу входило описание природы, населения и хозяйства огромной территории – Европейской России, Урала, части Сибири.

Разновидностью полевых исследований являются географические стационары. Инициатива их создания принадлежит А.А. Григорьеву, первый стационар под его руководством был создан на Тянь-Шане. Широкой известностью пользуются географический стационар Государственного гидрологического института на Валдае, географический стационар МГУ.

Картографический метод исследования заключается в использовании карт в целях получения сведений (качественных и количественных характеристик); изучения взаимосвязей и взаимозависимостей явлений; установления динамики и эволюции явлений; нанесения данных мониторинга. Изучение географических карт – необходимое условие для успешных полевых работ. В это время выявляются пробелы в данных, определяются районы комплексных исследований. Карты – конечный итог полевых работ, они отражают взаиморасположение и структуру изученных объектов, показывают их взаимосвязи. Однако картографическое изображение плохо раскрывает динамику явлений. Последнее в настоящее время преодолевается за счет применения цифровых методов картографирования и создания геоинформационных систем (ГИС).

Аэрофотосъемка используется в географии с 30-х годов 20 века, космические съемки появились сравнительно недавно. Они позволяют в комплексе, на больших территориях и с большой высоты оценить изучаемые объекты.

Метод балансов – в основе находится универсальный физический закон – закон сохранения вещества и энергии. Установив все возможные пути входа и выхода вещества и энергии и измерив потоки, исследователь по их разности может судить, произошло ли накопление в геосистеме этих субстанций или расходовано ею. Балансовый метод используется в землеведении в качестве средства исследования энергетики, водного и солевого режимов, газового состава, биологического и других круговоротов.

Все географические исследования отличает специфический географический подход – фундаментальное представление о взаимосвязи и взаимообусловленности явлений, комплексный взгляд на природу. Он характеризуется территориальностью, глобальностью, историзмом.

ТЕМА 2

ФАКТОРЫ ФОРМИРОВАНИЯ ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ

Географическая оболочка, сформировавшаяся на планете, испытывает со стороны космоса и недр Земли постоянное воздействие. Факторы ее формирования можно разделить на космические и планетарные. К космическим факторам относятся: движение галактик, излучение звезд и Солнца, взаимодействие планет и спутников, воздействие небольших небесных тел – астероидов, комет, метеорных потоков. К планетарным – орбитальное движение и осевое вращение Земли, форма и размеры планеты, внутреннее строение Земли, геофизические поля.

Космические факторы

Космос (Вселенная) – весь существующий материальный мир. Он вечен во времени и бесконечен в пространстве, существует объективно, не зависимо от нашего сознания. Материя во Вселенной сосредоточена в звездах, планетах, астероидах, спутниках, кометах и других небесных телах; 98 % всей видимой массы сосредоточено в звездах.

Во вселенной небесные тела образуют системы различной сложности. Например, планета Земля со спутником Луной образует систему. Она входит в более крупную систему – Солнечную, образованную Солнцем и движущимися вокруг него небесными телами – планетами, астероидами, спутниками, кометами. Солнечная система, в свою очередь, является частью Галактики. Галактики образуют еще более сложные системы – скопления галактик. Самая грандиозная звездная система, состоящая из множества галактик – Метагалактика – доступная для человека часть Вселенной (видимая с помощью приборов). По современным представлениям, она имеет диаметр около 100 млн. световых лет, возраст Вселенной 15 млрд. лет, в нее входит 1022 звезд.

Расстояния во Вселенной определяются, следующими величинами: астрономическая единица, световой год.

Астрономическая единица – среднее расстояние от Земли до Солнца:

1 а.е. = 149 600 000 км.

Световой год – расстояние, которое свет проходит за год:

1 св. год = 9,46 · 1012 км.

Звезды в Метагалактике образуют галактики (от греч. galaktikos – млечный) – это большие звездные системы, в которых звезды связаны силами гравитации. Предположение о том, что звезды образуют галактики, высказал И. Кант в 1755 г.

Наша Галактика называется Млечный путь грандиозное звездное скопление, видимое на ночном небе как туманная, молочная полоса. Размеры галактики постоянно уточняются. В начале ХХ в. приняли следующие величины: диаметр галактического диска равен 100 тыс. св. лет, толщина – около 1000 св. лет. В Галактике 150 млрд. звезд, более 100 туманностей. Основным химическим элементом в нашей Галактике является водород, ¼ приходится на гелий. Расстояние от Солнечной системы до центра Галактики составляет 23–28 тыс. св. лет. Солнце находится на периферии Галактики. Для Земли это обстоятельство очень благоприятно: она расположена в относительно спокойной части Галактики и в течение миллиардов лет не испытывает влияния космических катаклизмов.

Солнечная система вращается вокруг центра Галактики со скоростью 200–220 км/с, совершая один оборот за 180–200 млн. лет. За все время существования Земля облетела вокруг центра Галактики не больше 20 раз. На Земле 200 млн. лет – продолжительность тектонического цикла. Это очень важный этап в жизни Земли, характеризующийся определенной последовательностью тектонических событий. Цикл начинается погружением земной коры, накоплением мощных толщ осадков, подводным вулканизмом. Далее усиливается тектоническая деятельность, возникают горы, меняются очертания материков, что, в свою очередь, вызывает изменение климата.

Солнечная система состоит из центральной звезды – Солнца, девяти планет, более 60 спутников, более 40 000 астероидов и около 1000 000 комет. Радиус солнечной системы до орбиты Плутона составляет 5,9 млрд. км.

Солнце – центральная звезда Солнечной системы. Это ближайшая к Земле звезда. Диаметр Солнца составляет 1,39 млн. км, масса – 1,989 х 1030 кг. По спектральной классификации звезд Солнце является «желтым карликом» (класс G 2), возраст Солнца оценивается в 5–4,6 млрд. лет. Солнце вращается вокруг своей оси против часовой стрелки, в том же направлении движутся планеты вокруг Солнца. Основное вещество, образующее Солнце, – водород (71% массы светила), на гелий приходится 27 %, на углерод, азот, кислород, металлы – 2 %.

Солнце излучает два основных потока энергии – электромагнитное (солнечная радиация) и корпускулярное (солнечный ветер) излучение. Тепловое поле поверхности планет Солнечной системы создается солнечной радиацией. Электромагнитное излучение распространяется со скоростью света и за 8,4 мин достигает поверхности Земли. В спектре излучения выделяют невидимую ультрафиолетовую радиацию (около 7 %), видимую световую радиацию (47 %), невидимую инфракрасную радиацию (46 %). Доля самых коротких волн и радиоволн составляет менее 1 % излучения.

Корпускулярное излучение – поток заряженных частиц (электронов и протонов), идущий от Солнца. Скорость его 1500–3000 км/с, он достигает магнитосферы за несколько суток. Магнитное поле Земли задерживает корпускулярное излучение, и заряженные частицы начинают двигаться по магнитным силовым линиям.

В пик солнечной активности возрастает поток заряженных частиц. Подходя к магнитосфере, поток увеличивает ее напряженность, на Земле начинаются магнитные бури. В это время активизируются тектонические движения, начинаются извержения вулканов. В атмосфере возрастает количество атмосферных вихрей – циклонов, усиливаются грозы. Наиболее ярким и впечатляющим появлением бомбардировки атмосферы солнечными частицами являются полярные сияния – свечение верхних слоев атмосферы, вызванное ионизацией газов.

Планеты расположены от Солнца в такой последовательности: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Все планеты имеют общие свойства и особенности. К общим можно отнести следующие свойства:

– все планеты имеют шарообразную форму;

– все планеты вращаются вокруг Солнца в одном направлении против часовой стрелки для наблюдателя, смотрящего со стороны Северного полюса Мира. Это направление называется прямым. В таком же направлении движутся почти все спутники и астероиды;

– осевое вращение большинства планет происходит в том же направлении – против часовой стрелки. Исключение составляют Венера и Уран, они вращаются по часовой стрелке;

– орбиты большинства планет близки по форме к окружности, эксцентриситет (отношение расстояния между центром и фокусом эллипса к длине большой полуоси) их мал, поэтому планеты не подходят близко друг к другу, их гравитационное воздействие мало (только у Меркурия и Плутона орбиты сильно вытянуты);

– орбиты всех планет находятся примерно в одной плоскости эклиптики. Причем каждая следующая планета – примерно в два раза дальше от Солнца, чем предыдущая.

Эту закономерность установили два ученых: И. Тициус (1729–1796) и И. Боде (1747–1826). По правилу Тициуса-Боде, расстояние от Солнца до планеты можно определить по формуле:

r = 0,4 + 0,3 · 2n,

где n = 0 для Венеры; n=1 для Земли; n=2 для Марса; n=4 для Юпитера.

В указанную последовательность не вписываются Меркурий, Нептун и Плутон; n=3 соответствует поясу астероидов, планеты на этом расстоянии от Солнца нет. По одной из гипотез предполагается, что на данном месте когда-то существовала планета Фаэтон, но гравитационное воздействие Юпитера привело к ее распаду.

Планеты условно делятся на две большие группы: планеты земной группы и планеты-гиганты. К первой группе относятся Меркурий, Венера, Земля, Марс. Вторую группу образуют Юпитер, Сатурн, Уран, Нептун. Плутон по размерам и свойствам ближе к ледяным спутникам планет-гигантов.

Планеты земной группы отличает близкое расположение к Солнцу, небольшие размеры (радиус Меркурия равен 2440 км, Венеры – 6052, Земли – 6371, Марса – 3390 км), высокая плотность вещества (Меркурий – 5,42 г/см3, Венера – 5,25 г/см3, Земля – 5,5 г/см3, Марс – 3,95 г/см3); основными их составляющими являются силикаты (соединения кремния) и железо, следовательно, планеты земной группы твердые тела. Планеты медленно вращаются вокруг своей оси (у Меркурия период вращения равен 58,7 земных суток, у Венеры – 243, у Марса – немного больше суток). Из-за медленного вращения полярное сжатие у планет небольшое, т.е. они имеют близкую к шару форму. Планеты земной группы обладают значительной скоростью орбитального движения (Меркурий – 48 км/с, Венера – 35 км/с, Марс – 24 км/с). Планеты имеют всего три спутника: у Земли – Луна, у Марса – Фобос и Деймос.

Планеты-гиганты расположены на большом расстоянии от Солнца, имеют большие размеры (радиус Юпитера равен 69 911 км, Сатурна – 58 232 км, Урана – 25 362 км, Нептуна – 24 624 км), однако плотность планет небольшая (Юпитер – 1,3 г/см3, Сатурн – 0,69 г/см3, Уран – 1,29 г/см3, Нептун – 1,64 г/см3). Наиболее распространенными на них химическими элементами являются водород и гелий, следовательно, планеты-гиганты представляют собой газовые шары. Все планеты-гиганты с большой скоростью вращаются вокруг своей оси, период осевого вращения планет колеблется от 10 ч – у Юпитера, до 17 ч – у Урана. Благодаря быстрому вращению планеты имеют большое полярное сжатие (у Сатурна – 1/10). Скорость орбитального вращения у планет небольшая (полный оборот вокруг Солнца Юпитер совершает за 11,86 года, а Нептун за 165 лет).

В Солнечной системе 99,9 % массы заключено в Солнце, поэтому основная сила, управляющая движением тел в Солнечной системе – это притяжение Солнца. Так как планеты двигаются вокруг Солнца в одной плоскости практически по круговым орбитам, их взаимное притяжение невелико, но и оно вызывает отклонения в движении планет. Вероятно, большее взаимодействие планет происходит тогда, когда они подходят близко друг к другу. Известно явление, называемое «парадом планет», когда на одной линии выстраивается большинство планет (2002 год – на одну линию «встали» пять планет: Меркурий, Венера, Марс, Юпитер, Сатурн).

Астероиды (от греч. astereideis – звездоподобные) – малые планеты Солнечной системы Они образуют тонкое кольцо между орбитами Марса и Юпитера (предположительно образовались после разрушения планеты Фаэтон или за счет сгустков первичного газопылевого облака). Их среднее расстояние от Солнца 2,8 – 3,6 а.е. Первый астероид был назван Церера (1801 год), к 1880 году астероидов было известно уже около 200, сейчас орбиты вычислены для более 40 000 астероидов. Самый большой астероид Церера имеет диаметр 1000 км, диаметр Паллады – 608, Весты – 540, Гигии – 450 км. Практически все астероиды имеют неправильную форму, только самые крупные приближаются к шару.

Кометы (от греч. kometes – хвостатые) небольшие несветящиеся тела Солнечной системы, которые становятся видимыми только при подходе к Солнцу. Движутся по сильно вытянутым эллипсам. Число комет измеряется миллионами. С приближением к Солнцу у них резко обособляется «голова» и «хвост». Головная часть состоит изо льда и частиц пыли. В разреженной газопылевой среде хвоста обнаружены ионы натрия и углерода. Одна из самых известных комет – комета Галлея, каждые 76 лет она появляется в зоне видимости Земли.

Метеоры мельчайшие твердые тела массой несколько граммов, вторгшиеся в атмосферу планеты. Мелкие частицы вещества, двигаясь со скоростью 11–12 км/с, из-за трения в атмосфере разогреваются до 1000º С, что вызывает их свечение на протяжении нескольких секунд. Они сгорают в атмосфере, не долетая до поверхности. Метеоры делятся на единичные и метеорные потоки. Наиболее известны метеорные потоки: Персеиды (падают в августе), Дракониды (октябрь), Леониды (ноябрь). Если Земля пересекает орбиту метеорного потока, частицы «налетают на планету», начинается «звездный дождь». Упавшие на поверхность планеты небесные тела называются метеоритами. Наибольший метеорный кратер на Земле имеет диаметр 1265 м и расположен в Аризоне около каньона Диабло. Наиболее распространенными элементами метеоритов являются кислород, железо, кремний, магний, никель и др.

Солнечно-земные связи ответные реакции ГО на изменения солнечной активности. К солнечно-земным связям необходимо отнести:

– динамический фактор, т.е. совокупность явлений, обусловленных движением Земли вокруг Солнца по орбите и вековыми изменениями параметров движения (прежде всего положения земной оси в пространстве);

– энергетический фактор, связанный с поступлением солнечной радиации. На уровне земной поверхности изменчивость энергетического фактора определяется известными обстоятельствами – суточным ритмом, сменой времени года и состоянием атмосферы и земной поверхности;

– вещественный поток α- и β-частиц, т.е. протонов и электронов «солнечного ветра», который участвует в материальном балансе верхней части атмосферы (экзосферы и ионосферы).

В настоящее время солнечную активность связывают с регулярным образованием в атмосфере Солнца пятен, факелов, вспышек, протуберанцев. В середине 19 в. швейцарский астроном Р. Вольф вычислил количественный показатель солнечной активности, известный во всем мире как число Вольфа. Уровень солнечной активности изменяется с периодичностью около 11 лет. Главным аспектом влияния Солнца на Землю, энергетической базой солнечно-земных связей, является поток солнечной радиации, энергия электромагнитного и корпускулярного излучения. На пути к поверхности Земли солнечное излучение преодолевает несколько преград: межпланетную среду, нейтральную атмосферу, ионосферу и геомагнитное поле. Одновременно с 11-летним циклом протекает вековой, точнее 80–90 летний, цикл солнечной активности. Несогласованно накладываясь друг на друга, они вносят заметные изменения в процессы, совершающиеся в ГО. В частности, установлена корреляция между 11-летним циклом солнечной активности и землетрясениями, колебаниями уровня озер, рек, грунтовых вод, частотой полярных сияний, интенсивностью грозовой деятельности, температурой воздуха, атмосферным давлением, урожайностью сельхозкультур, повторяемостью эпидемических заболеваний, смертностью населения и др. Велико воздействие солнечной активности на общую циркуляцию воздушных масс в тропосфере. Установлено, что интенсивность ее изменяется в максимумы 11-летних циклов, а вместе с ней и тип атмосферной циркуляции.

Планетарные факторы

Планета Земля. Земля – третья от Солнца планета Солнечной системы и самая крупная планета земной группы. Вместе с Луной Земля образует систему – двойную планету.

Вокруг Солнца Земля вращается по эллиптической орбите, в одном из фокусов которой расположено Солнце. Средний радиус орбиты 149,6 млн. км, в перигелии он уменьшается до 147,117 млн. км, а в афелии увеличивается до 152,083 млн. км. Скорость орбитального движения составляет 29,765 км/с, период обращения – 365,26 средних солнечных суток. Планета вращается вокруг оси, наклоненной к плоскости орбиты под углом 66º33/22//, делая оборот за 23 ч. 56 мин. 4 сек.

Фигура Земли понятие модельное, некоторая идеализация, с помощью которой стремятся описать форму планеты. В зависимости от цели описания пользуются различными моделями формы планеты – различными фигурами. Расположим известные модели в ряд от общих к более детализированным, считая их последовательными приближениями к истинной форме Земли (рис. 2).

1. Первое приближение – сфера. Это наиболее общая модель формы нашей планеты. Сфера не имеет выраженной единственной оси симметрии – все ее оси равноправны, их бесчисленное множество, как и экваторов. Однако Земля, как уже отмечалось, имеет одну ось вращения и экваториальную плоскость – плоскость симметрии (а также плоскости симметрии меридианов). Это несоответствие сферической модели Земли ее реальной форме ощутимо проявляется при изучении горизонтальной структуры ГО, характеризующейся выраженной поясностью и известной симметрией относительно экватора (с элементами дисимметрии).

2. Второе приближение – эллипсоид вращения. Тип симметрии эллипсоида вращения отвечает указанным выше особенностям формы Земли (выраженная ось, экваториальная плоскость симметрии, меридиональные плоскости). Эта модель используется в высшей геодезии для расчета координат, построения картографических сеток и других вычислений.

Средний экваториальный радиус – 6378,160 км;

Средний полярный радиус – 6356,777 км;

Полярное сжатие – 21,383 км.

3. Третье приближение – трехосный кардиоидальный эллипсоид вращения. Северный полярный радиус больше южного на 30–100 м.

  4. Четвертое приближение – геоид. Геоид – уровенная поверхность, совпадающая со средним уровнем мирового океана (МО) и являющаяся геометрическим местом точек пространства, имеющих одинаковый потенциал тяжести. Теоретически поверхность геоида в каждой точке перпендикулярна к направлению силы тяжести (т.е. линии отвеса) и отождествляется со средним положением спокойной водной поверхности в океанах и открытых морях, мысленно продолженной также и под материками. Поверхность геоида всюду выпуклая (что отвечает выпуклости океанической поверхности).
  Рис. 2. Представления о форме поверх-ности Земли (по Г.Н. Каттерфельду): 1 – сфера, 2 – эллипсоид, 3 – геоид (кардиоид)

Несмотря на всю сложность своей поверхности, геоид мало отличается от сфероида. Отклонения, за отдельными исключениями, составляют не более +- 100 м, т.е. поверхность геоида редко выступает над поверхностью сфероида более чем на 100 м и редко погружается под поверхность сфероида более чем на такую же величину. Средняя же величина отступления геоида от наиболее удачно подобранного земного эллипсоида не превышает ± 50 м. Работы по вычислению размеров Земли, выполненные под руководством Ф.Н. Красовского (1940–1946), показали, что геоид близок к трехосному эллипсоиду вращения. У Земли один экваториальный радиус больше другого на 213 м. Главное географическое значение формы Земли состоит в том, что она обусловливает зональное распределение тепла на земной поверхности, и, следовательно, зональность всех явлений, зависящих от теплового режима.

Земля совершает множество движений одновременно. В географии принято учитывать и анализировать три из них: орбитальное движение, суточное вращение и движение системы Земля-Луна.

Орбитальное движение Земли. Вокруг Солнца Земля движется по эллиптической орбите (длина 934 млн. км) со скоростью 29,765 км/с. В афелии (самой удаленной от светила точке) расстояние до Солнца составляет 152·106 км и приходится на 5 июля, а спустя полгода, в перигелии (2 января) оно уменьшается и составляет 147·106 км. Полный оборот вокруг Солнца Земля совершает в течение года за 365 суток 6 часов 9 минут 9 секунд.

Географические следствия орбитального движения Земли:

1. Земная ось наклонена по отношению к плоскости орбиты и образует с нею угол, равный 66º33/. В процессе движения ось перемещается поступательно, поэтому на орбите возникают 4 характерные точки:

21 марта и 23 сентября – дни равноденствий – наклон земной оси оказывается нейтральным по отношению к Солнцу, а обращенные к нему участки планеты равномерно освещены от полюса до полюса. На всех широтах в эти сроки продолжительность дня и ночи равна 12 часам.

21 июня и 22 декабря – дни летнего и зимнего солнцестояний – плоскость экватора наклонена по отношению к солнечному лучу под углом 23º27/, Солнце в этот момент находится в зените над одним из тропиков.

2. С наклоном земной оси к плоскости орбиты связано наличие таких характерных параллелей, как тропики и полярные круги. Полярный круг – параллель, широта которой равна углу наклона земной оси к плоскости орбиты (66º33/). Тропик – параллель, широта которой дополняет угол наклона земной оси до прямого (23º27/). Полярные круги являются границами распространения полярного дня и полярной ночи. Тропики являются границами зенитального положения солнца в полдень. На тропиках солнце бывает в зените один раз, в пространстве между ними – два раза в году.

3. Смена времен года (зима, весна, лето, осень – северное полушарие (СП); лето, осень, зима и весна – южное полушарие (ЮП). Характерно неравномерное распределение года по сезонам (весна содержит 92,8 суток, лето – 93,6, осень – 89,8, зима – 89,0), что объясняется делением эллиптической орбиты Земли линиями солнцестояний и равноденствий на неравные части, для прохождения которых требуется разное время.

4. Образование поясов освещения, которые выделяются по высоте Солнца над горизонтом и продолжительности освещения. В жарком поясе, расположенном между тропиками, Солнце дважды в год в полдень бывает в зените. На линиях тропиков Солнце стоит в зените только один раз в году: на Северном тропике (тропик Рака) в полдень 22 июня, на Южном тропике (тропик Козерога) – в полдень 22 декабря.

Между тропиками и полярными кругами выделяются два умеренных пояса. В них Солнце никогда не бывает в зените, продолжительность дня и высота Солнца над горизонтом сильно меняются в течение года.

Между полярными кругами и полюсами расположены два холодных пояса, здесь бывают полярные дни и ночи. Следовательно, в году бывают дни, когда Солнце вообще не показывается из-за горизонта или не опускается за горизонт.

5. Смена времен года обусловливает годовой ритм в ГО. В жарком поясе годовой ритм зависит, главным образом, от изменения увлажнения, в умеренном – от температуры, в холодном – от условий освещения.

Осевое вращение Земли. Земля вращается с запада на восток против часовой стрелки, совершая полный оборот за сутки. Ось вращения отклонена на 23º27/ от перпендикуляра к плоскости эклиптики. Средняя угловая скорость вращения, т.е. угол, на который смещается точка на земной поверхности, для всех широт одинакова и составляет 15º за 1 час. Линейная скорость, т.е. путь, проходимый точкой в единицу времени, зависит от широты места. Географические полюсы не вращаются, там скорость равна нулю. На экваторе каждая точка проходит наибольший путь и имеет наибольшую скорость – 455 м/с. Скорость на одном меридиане разная, на одной параллели одинаковая.

Географическими следствиями осевого вращения Земли являются:

1. Смена дня и ночи, т.е. изменение в течение суток положения Солнца относительно плоскости горизонта данной точки (осевое вращение дает основную единицу времени – сутки). С этим связаны суточный ритм солнечной радиации, интенсивность которой зависит от угла наклона земной оси, ритмы нагревания и охлаждения поверхности, местной циркуляции воздуха, жизнедеятельности живых организмов.

2. Деформация фигуры Земли – сплюснутость у полюсов (полярное сжатие), связанная с возрастанием центробежной силы от полюсов к экватору.

3. Существование силы Кориолиса отклоняющего действия вращения Земли. Сила Кориолиса всегда перпендикулярна движению, направлена вправо в северном полушарии и влево – в Южном. Величина ее зависит от скорости движения и массы движущегося тела, а также от широты места:

F = 2 m υ w sin φ,

 

где m – масса тела; υ – линейная скорость тела; w – угловая скорость вращения Земли (важна только в вековом аспекте, для небольших отрезков времени угловая скорость принимается постоянной); φ – широта места.

4. Ось вращения, полюсы и экватор являются основой географической системы координат. Экватор служит плоскостью симметрии, относительно которой размещаются пояса освещения, меняются величина солнечной радиации и другие важные параметры. От полушария (Северного и Южного) зависит направление силы Кориолиса, а от широты – ее величина, полюсы не участвуют в суточном вращении.

Движение в системе Земля – Луна. Двойная планета Земля – Луна вращается вокруг общего центра масс (барицентра) находящегося внутри планеты Земля, на расстоянии 0,73 R (радиуса Земли) от ее центра. Поэтому все точки описывают одинаковые орбиты, центробежные силы повсеместно одинаковы и направлены в одну сторону – от Луны. Равнодействующая силе притяжения Луны и центробежной – есть приливообразующая сила. На всей половине Земли, обращенной к Луне, больше сила притяжения, а на половине, обращенной от Луны, – центробежная. Воздействие Луны – спутника Земли велико. Оно создает приливное торможение суточного вращения нашей планеты, которое имеет большое географическое значение, если рассматривать длительные (в сотни миллионов лет) отрезки геологического времени. Приливное торможение, вызывая замедление вращения, уменьшает полярную сплюснутость Земли и силу Кориолиса, отклоняющую движущиеся массы воздуха и воды. Это влияет на циркуляцию атмосферы и вод океана, от которых, в свою очередь, зависят условия климата. Считают, что из-за замедления суточного вращения Земли продолжительность суток за последний 1 млрд. лет возросла на 6 часов.

ТЕМА 3



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 475; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.2.15 (0.057 с.)