Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Суточный и годовой ход температуры воздуха.Содержание книги
Поиск на нашем сайте
Суточным ходом температуры воздуха называется изменение температуры воздуха в течение суток. В общем, он отражает ход температуры земной поверхности, но моменты наступления максимумов и минимумов несколько запаздывают: максимум наступает в 14 часов, минимум после восхода солнца. Суточная амплитуда температуры воздуха – разница между максимальной и минимальной температурой воздуха в течение суток. Она выше на суше, чем над океаном, уменьшается при движении в высокие широты и возрастает в местах с оголенной почвой. Наибольшая амплитуда в тропических пустынях – до 40º С. Величина суточной амплитуды температуры воздуха – это один из показателей континентальности климата. В пустынях она намного больше, чем в районах с морским климатом. Годовой ход температуры воздуха (изменение среднемесячной температуры в течение года) определяется, прежде всего, широтой места. Годовая амплитуда температуры воздуха – разница между максимальной и минимальной среднемесячной температурой. Географическое распределение температуры воздуха показывают с помощью изотерм – линий, соединяющих на карте точки с одинаковыми температурами. Распределение температуры воздуха зонально, годовые изотермы в целом имеют субширотное простирание и соответствуют годовому распределению радиационного баланса (рис.10, 11). В среднем за год самой теплой параллелью является 10º с.ш. с температурой +27º С – это термический экватор. Летом термический экватор смещается до 20º с.ш., зимой – приближается к экватору на 5º с.ш.
Рис. 10. Распределение средней температуры воздуха в июле
Рис. 11. Распределение средней температуры воздуха в январе
Смещение термического экватора в СП объясняется тем, что в СП площадь суши, расположенная в низких широтах, больше по сравнению с ЮП, а она в течение года имеет более высокие температуры. Тепло по земной поверхности распределено зонально-регионально. Помимо географической широты, на распределение температур на Земле влияют характер распределения суши и моря, рельеф, высота местности над уровнем моря, морские и воздушные течения. Широтное распределение годовых изотерм нарушают теплые и холодные течения. В умеренных широтах СП западные берега, омываемые теплыми течениями, теплее восточных берегов, вдоль которых проходят холодные течения. Следовательно, изотермы у западных берегов изгибаются к полюсу, у восточных – к экватору. Средняя годовая температура СП +15,2º С, а ЮП +13,2º С. Минимальная температура в СП достигала –77º С (Оймякон) (абсолютный минимум СП) и –68º С (Верхоянск). В ЮП минимальные температуры гораздо ниже; на станциях «Советская» и «Восток» была отмечена температура –89,2º С (абсолютный минимум ЮП). Минимальная температура в безоблачную погоду в Антарктиде может опускаться до –93º С. Самые высокие температуры наблюдаются в пустынях тропического пояса: в Триполи +58º С, в Калифорнии в Долине Смерти, отмечена температура +56,7º С. О том, насколько материки и океаны влияют на распределение температур, дают представление карты изономал (изономалы – линии, соединяющие точки с одинаковыми аномалиями температур). Аномалии представляют собой отклонения фактических температур от среднеширотных. Аномалии бывают положительные и отрицательные. Положительные аномалии наблюдаются летом над подогретыми материками. Над Азией температуры выше среднеширотных на 4º С. Зимой положительные аномалии располагаются над теплыми течениями (над теплым Северо-Атлантичеким течением у берегов Скандинавии температура выше нормы на 28º С). Отрицательные аномалии ярко выражены зимой над охлажденными материками и летом – над холодными течениями. Например, в Оймяконе зимой температура на 22º С ниже нормы. На Земле выделяют следующие тепловые пояса (за границы тепловых поясов приняты изотермы): 1. Жаркий, ограничен в каждом полушарии годовой изотермой +20º С, проходящий вблизи 30º с. ш. и ю.ш. 2. Два умеренных пояса, которые в каждом полушарии лежат между годовой изотермой +20º С и +10º С самого теплого месяца (соответственно июля или января). 3. Два холодных пояса, граница проходит по изотерме 0º С самого теплого месяца. Иногда выделяют области вечного мороза, которые располагаются вокруг полюсов (Шубаев, 1977). Таким образом: 1. Единственным источником энергии, имеющим практическое значение для хода экзогенных процессов в ГО, является Солнце. Тепло от Солнца поступает в мировое пространство в форме лучистой энергии, которая затем, поглощенная Землей, превращается в энергию тепловую. 2. Солнечный луч на своем пути подвергается многочисленным воздействиям (рассеяние, поглощение, отражение) со стороны различных элементов пронизываемой им среды и тех поверхностей, на которые он падает. 3. На распределение солнечной радиации влияют: расстояние между землей и Солнцем, угол падения солнечных лучей, форма Земли (предопределяет убывание интенсивности радиации от экватора к полюсам). В этом основная причина выделения тепловых поясов и, следовательно, причина существования климатических зон. 4. Влияние широты местности на распределение тепла, корректируется рядом факторов: рельеф; распределение суши и моря; влияние холодных и теплых морских течений; циркуляция атмосферы. 5. Распределение солнечной теплоты осложняется еще и тем, что на закономерности горизонтального (вдоль земной поверхности) распределения радиации и тепла накладываются закономерности и особенности вертикального распределения. Общая циркуляция атмосферы В атмосфере формируются воздушные потоки разного масштаба. Они могут охватывать весь земной шар, а по высоте – тропосферу и нижнюю стратосферу, или воздействовать только на ограниченный участок территории. Воздушные потоки обеспечивают перераспределение тепла и влаги между низкими и высокими широтами, заносят влагу вглубь континента. По площади распространения выделяют ветры общей циркуляции атмосферы (ОЦА), ветры циклонов и антициклонов, местные ветры. Главной причиной образования ветров является неравномерное распределение давления по поверхности планеты. Давление. Нормальное атмосферное давление – вес атмосферного столба сечением 1 см2 на уровне океана при 0ºС на 45º широты. Оно уравновешивается столбиком ртути в 760 мм. Нормальное атмосферное давление равно 760 мм ртутного столба или 1013,25 мб. Давление в СИ измеряется в паскалях (Па): 1 мб = 100 Па. Нормальное атмосферное давление равно 1013,25 гПа. Самое низкое давление, которое наблюдалось на Земле (на уровне моря), 914 гПа (686 мм); самое высокое – 1067,1 гПа (801 мм). Давление с высотой понижается, так как мощность вышележащего слоя атмосферы уменьшается. Расстояние в метрах, на которое надо подняться или опуститься, чтобы атмосферное давление изменилось на 1 гПа, называется барической ступенью. Барическая ступень на высоте от 0 до 1 км составляет 10,5 м, от 1 до 2 км – 11,9 м, 2–3 км – 13,5 м. Величина барической ступени зависит от температуры: с повышением температуры она увеличивается на 0,4 %. В теплом воздухе барическая ступень больше, следовательно, теплые области атмосферы в высоких слоях имеют большее давление, чем холодные. Величина, обратная барической ступени, называется вертикальным барическим градиентом – это изменение давления на единицу расстояния (за единицу расстояния принимается 100 м). Давление изменяется в результате перемещения воздуха – его оттока из одного места и притока в другое. Движение воздуха обусловлено изменением плотности воздуха (г/см3), возникающим в результате неравномерного нагрева подстилающей поверхности. Над одинаково нагретой поверхностью с высотой давление равномерно понижается, и изобарические поверхности (поверхности, проведенные через точки с одинаковым давлением) располагаются параллельно друг другу и подстилающей поверхности. В области повышенного давления изобарические поверхности обращены выпуклостью вверх, в области пониженного – вниз. На земной поверхности давление показывается с помощью изобар – линий, соединяющих точки с одинаковым давлением. Распределение атмосферного давления на уровне океана, изображенное с помощью изобар, носит наименование барического рельефа. Давление атмосферы на земную поверхность, его распределение в пространстве и изменение во времени называется барическим полем. Области высокого и низкого давления, на которые расчленено барическое поле, называются барическими системами. К замкнутым барическим системам относятся барические максимумы (система замкнутых изобар с повышенным давлением в центре) и минимумы (система замкнутых изобар с пониженным давлением в центре), к незамкнутым – барические гребень (полоса повышенного давления от барического максимума внутри поля пониженного давления), ложбина (полоса пониженного давления от барического минимума внутри поля повышенного давления) и седловина (незамкнутая система изобар между двумя барическими максимумами и двумя минимумами). В литературе встречается понятие «барическая депрессия» – пояс пониженного давления, внутри которого могут быть замкнутые барические минимумы. Давление по земной поверхности распределено зонально. На экваторев течение года располагается пояс пониженного давления – экваториальная депрессия (менее 1015 гПа). В июле она перемещается в Северное полушарие на 15–20º с.ш., в декабре – в Южное, на 5º ю.ш. В тропических широтах (между 35º и 20º обоих полушарий) давление в течение года повышенное – тропические (субтропические) барические максимумы (более 1020 гПа). Зимой над океанами и над сушей возникает сплошной пояс повышенного давления (Азорский и Гавайский – СП; Ю-Атлантический, Ю-Тихоокеанский и Ю-Индийский – ЮП). Летом повышенное давление сохраняется только над океанами, над сушей давление уменьшается, возникают термические депрессии (Ирано-Тарский минимум – 994 гПа). В умеренных широтах СП летом формируется сплошной пояс пониженного давления, однако барическое поле дисимметрично: в ЮП в умеренных и субполярных широтах над водной поверхностью весь год существует полоса пониженного давления (Приантарктический минимум - до 984 гПа); в СП в связи с чередованием материковых и океанических секторов барические минимумы выражены только над океанами (Исландский и Алеутский – давление в январе 998 гПа), зимой над материками из-за сильного охлаждения поверхности возникают барические максимумы. В полярных широтах, над ледяными щитами Антарктиды и Гренландии давление в течение года повышенное – 1000 гПа (низкие температуры – воздух холодный и тяжелый) (рис. 12, 13). Устойчивые области повышенного и пониженного давления, на которые распадается барическое поле у поверхности земли, называют центрами действия атмосферы. Существуют территории, над которыми в течение года давление сохраняется постоянным (преобладают барические системы одного типа, либо максимумы, либо минимумы), здесь формируются постоянные центры действия атмосферы: – экваториальная депрессия; – Алеутский минимум (умеренные широты СП); – Исландский минимум (умеренные широты СП); – зона пониженного давления умеренных широт ЮП (Приантарктический пояс пониженного давления); – субтропические зоны высокого давления СП: Азорский максимум (Северо-Атлантический максимум) Гавайский максимум (Северо-Тихоокеанский максимум) – субтропические зоны высокого давления ЮП: Южно-Тихоокеанский максимум (ю-зап. Ю.Америки) Южно-Атлантический максимум (антициклон о. Св. Елены)
Южно-Индийский максимум (антициклон о. Маврикий) – Антарктический максимум; – Гренландский максимум. Сезонные барические системы образуются в том случае, если давление по сезонам изменяет знак на обратный: на месте барического максимума возникает барический минимум и наоборот. К сезонным барическим системам относятся: СП: – летний Южно-Азиатский минимум с центром около 30º с.ш. (997 гПа) – зимний Азиатский максимум с центром над Монголией (1036 гПа) – летний Мексиканский минимум (Северо-Американская депрессия) – 1012 гПа – зимний Северо-Американский и Канадский максимумы (1020 гПа) ЮП: – летние (январские) депрессии над Австралией, Южной Америкой и южной Африкой уступают место зимой австралийскому, южноамериканскому и южноафриканскому антициклонам. Ветер. Горизонтальный барический градиент. Движение воздуха в горизонтальном направлении называется ветром. Ветер характеризуется скоростью, силой и направлением. Скорость ветра – расстояние, которое проходит воздух за единицу времени (м/с, км/ч). Сила ветра – давление, оказываемое воздухом на площадку в 1 м2, расположенную перпендикулярно движению. Сила ветра определяется в кг/м2 или в баллах по шкале Бофорта (0 баллов – штиль, 12 – ураган). Скорость ветра определяется горизонтальным барическим градиентом – изменением давления (падение давления на 1 гПа) на единицу расстояния (100 км) в сторону уменьшения давления и перпендикулярно изобарам. Кроме барометрического градиента на ветер действуют вращение Земли (сила Кориолиса), центробежная сила и трение. Сила Кориолиса отклоняет ветер вправо (в ЮП влево) от направления градиента. Центробежная сила действует на ветер в замкнутых барических системах – циклонах и антициклонах. Она направлена по радиусу кривизны траектории в сторону ее выпуклости. Сила трения воздуха о земную поверхность всегда уменьшает скорость ветра. Трение сказывается в нижнем, 1000-метровом слое, называемом слоем трения. Движение воздуха при отсутствии силы трения называется градиентным ветром. Градиентный ветер, дующий вдоль параллельных прямолинейных изобар, называется геострофическим, вдоль криволинейных замкнутых изобар – геоциклострофическим. Наглядное представление о повторяемости ветров определенных направлений дает диаграмма «роза ветров». В соответствии с барическим рельефом существуют следующие зоны ветров: – приэкваториальный пояс штилей (ветры сравнительно редки, так как господствуют восходящие движения сильно нагретого воздуха); – зоны пассатов северного и южного полушарий; – области затишья в антициклонах субтропического пояса высокого давления (причина – господство нисходящих движений воздуха); – в средних широтах обоих полушарий – зоны преобладания западных ветров; – в околополярных пространствах ветры дуют от полюсов в сторону барических депрессий средних широт, т.е. здесь обычны ветры с восточной составляющей. Общая циркуляция атмосферы (ОЦА) – система воздушных потоков планетарного масштаба, охватывающая весь земной шар, тропосферу и нижнюю стратосферу. В циркуляции атмосферы выделяют зональные и меридиональные переносы. К зональным переносам, развивающимся в основном в субширотном направлении, относятся: – западный перенос, господствующий на всей планете в верхней тропосфере и нижней стратосфере; – в нижней тропосфере, в полярных широтах – восточные ветры; в умеренных широтах – западные ветры, в тропических и экваториальных широтах – восточные (рис.14).
от полюса к экватору. В самом деле, воздух на экваторе в приземном слое атмосферы сильно прогревается. Теплый и влажный воздух поднимается вверх, объем его возрастает, и в верхней тропосфере возникает высокое давление. У полюсов из-за сильного охлаждения приземных слоев атмосферы воздух сжимается, объем его уменьшается и наверху давление падает. Следовательно, в верхних слоях тропосферы возникает переток воздуха от экватора к полюсам. Благодаря этому масса воздуха у экватора, а значит, и давление у подстилающей поверхности уменьшаются, а на полюсах возрастает. В приземном слое начинается движение от полюсов к экватору. Вывод: солнечная радиация формирует меридиональную составляющую ОЦА. На однородной вращающейся Земле действует еще и сила Кориолиса. Наверху сила Кориолиса отклоняет поток в СП вправо от направления движения, т.е. с запада на восток. В ЮП движение воздуха отклоняется влево, т.е. опять с запада на восток. Поэтому вверху (в верхней тропосфере и нижней стратосфере, в интервале высот от 10 до 20 км, давление уменьшается от экватора к полюсам) отмечен западный перенос, он отмечен для всей Земли в целом. В общем, движение воздуха происходит вокруг полюсов. Следовательно, сила Кориолиса формирует зональный перенос ОЦА. Внизу у подстилающей поверхности движение более сложное, влияние оказывает неоднородная подстилающая поверхность, т.е. расчленение ее на материки и океаны. Образуется сложная картина основных воздушных потоков. От субтропических поясов высокого давления воздушные потоки оттекают к экваториальной депрессии и в умеренные широты. В первом случае образуются восточные ветры тропических-экваториальных широт. Над океанами благодаря постоянным барическим максимумам они существуют круглый год – пассаты – ветры экваториальных периферий субтропических максимумов, постоянно дующие только над океанами; над сушей прослеживаются не всюду и не всегда (перерывы вызываются ослаблением субтропических антициклонов из-за сильного прогрева и перемещения в эти широты экваториальной депрессии). В СП пассаты имеют северо-восточное направление, в ЮП – юго-восточное. Пассаты обоих полушарий сходятся вблизи экватора. В области их сходимости (внутритропическая зона конвергенции) возникают сильные восходящие токи воздуха, образуются кучевые облака и выпадают ливневые осадки. Ветровой поток, идущий в умеренные широты от тропического пояса повышенного давления, формирует западные ветры умеренных широт. Они усиливаются в зимнее время, так как над океаном в умеренных широтах разрастаются барические минимумы, увеличивается барический градиент между барическими минимумами над океанами и барическими максимумами над сушей, следовательно, увеличивается и сила ветров. В СП направление ветров юго-западное, в ЮП – северо-западное. Иногда эти ветры называют антипассатами, но генетически они с пассатами не связаны, а являются частью общепланетарного западного переноса. Восточный перенос. Преобладающими ветрами в полярных широтах являются северо-восточные в СП и юго-восточные – в ЮП. Воздух перемещается от полярных областей повышенного давления в сторону пояса пониженного давления умеренных широт. Восточный перенос представлен также пассатами тропических широт. Вблизи экватора восточный перенос охватывает почти всю тропосферу, и западного переноса здесь нет. Анализ по широтам основных частей ОЦА позволяет выделить три зональных незамкнутых звена: – полярное: в нижней тропосфере дуют восточные ветры, выше – западный перенос; – умеренное звено: в нижней и верхней тропосфере – ветры западных направлений; – тропическое звено: в нижней тропосфере – восточные ветры, выше – западный перенос. Тропическое звено циркуляции получило название ячейки Гадлея (автор наиболее ранней схемы ОЦА, 1735 г.), умеренное звено – ячейки Фрреля (американский метеоролог). В настоящее время существование ячеек подвергается сомнению (С.П. Хромов, Б.Л. Дзердиевский), однако в литературе упоминание о них сохраняется. Струйные течения – ветры ураганной силы, дующие над фронтальными зонами в верхней тропосфере и нижней стратосфере. Особенно ярко они выражены над полярными фронтами, скорость ветра достигает 300–400 км/ч из-за больших градиентов давления и разреженности атмосферы. Меридиональные переносы осложняют систему ОЦА и обеспечивают междуширотный обмен теплотой и влагой. Главными меридиональными переносами являются муссоны – сезонные ветры, меняющие летом и зимой направление на противоположное. Выделяют муссоны тропические и внетропические. Тропические муссоны возникают по причине термических различий между летним и зимним полушариями, распределение суши и моря только усиливает, осложняет или стабилизирует это явление. В январе в СП располагается почти непрерывная цепь антициклонов: над океанами – постоянных субтропических, над материками – сезонных. В то же время в ЮП лежит сдвинутая туда экваториальная депрессия. В результате образуется перенос воздуха из СП в ЮП. В июле при обратном соотношении барических систем, происходит перенос воздуха через экватор из ЮП в СП. Таким образом, тропические муссоны – это не что иное, как пассаты, которые в некоторой, близкой к экватору полосе приобретают иное свойство – сезонную смену генерального направления. При помощи тропических муссонов осуществляется обмен воздуха между полушариями, а на между сушей и морем, тем более, что в тропиках термический контраст между сушей и морем вообще невелик. Область распространения тропических муссонов вся лежит между 20º с.ш. и 15º ю.ш. (тропическая Африка к северу от экватора, восточная Африка к югу от экватора; южная Аравия; Индийский океан до Мадагаскара на западе и до северной Австралии на востоке; Индостан, Индокитай, Индонезия (без Суматры), Восточный Китай; в Ю.Америке – Колумбия). Например, муссонное течение, зарождающееся в антициклоне над северной Австралией и идущее в Азию, направляется, в сущности, с одного материка на другой; океан в данном случае служит лишь промежуточной территорией. Муссоны в Африке есть обмен воздуха между сушей одного и того же материка, лежащих в разных полушариях, а над частью Тихого океана муссон дует с океанической поверхности одного полушария на океаническую поверхность другого. В образовании внетропических муссонов ведущую роль играет термический контраст между сушей и морем. Здесь муссоны возникают между сезонными антициклонами и депрессиями, одни из которых лежат на материке другие на океане. Так, зимние муссоны на Дальнем востоке есть следствие взаимодействия антициклона над Азией (с центром в Монголии) и постоянной Алеутской депрессии; летний – следствие антициклона над северной частью Тихого океана и депрессии над внетропической частью Азиатского материка. Внетропические муссоны лучше всего выражены на Дальнем Востоке (включая Камчатку), в Охотском море, в Японии, на Аляске и побережье Северного Ледовитого океана. Одно из главных условий проявления муссонной циркуляции – отсутствие циклонической деятельности (над Европой и С. Америкой муссонная циркуляция отсутствует вследствие интенсивности циклонической деятельности, она «смывается» западным переносом). Ветры циклонов и антициклонов. В атмосфере при встрече двух воздушных масс с разными характеристиками постоянно возникают крупные атмосферные вихри – циклоны и антициклоны. Они сильно усложняют схему ОЦА. Циклон – плоский восходящий атмосферный вихрь, проявляющийся у земной поверхности областью пониженного давления, с системой ветров от периферии к центру против часовой стрелки в СП и по часовой – в ЮП. Антициклон – плоский нисходящий атмосферный вихрь, проявляющийся у земной поверхности областью повышенного давления, с системой ветров от центра к периферии по часовой стрелке в СП и против часовой – в ЮП. Вихри плоские, так как их горизонтальные размеры – тысячи квадратных километров, а вертикальные – 15–20 км. В центре циклона наблюдаются восходящие токи воздуха, в антициклоне – нисходящие. Выделяют циклоны фронтальные, центральные, тропические и термические депрессии. Фронтальные циклоны образуются на Арктическом и Полярном фронтах: на Арктическом фронте Северной Атлантики (около восточных берегов Северной Америки и у Исландии), на Арктическом фронте в северной части Тихого океана (около восточных берегов Азии и у Алеутских островов). Циклоны обычно существуют несколько суток, двигаясь с запада на восток со скоростью около 20-30 км/ч. На фронте возникает серия циклонов, в серии по три-четыре циклона. Каждый следующий циклон находится на более молодой стадии развития и двигается быстрее. Циклоны нагоняют друг друга, смыкаются, образуя центральные циклоны – второй тип циклона. Благодаря малоподвижным центральным циклонам поддерживается область пониженного давления над океанами и в умеренных широтах. Циклоны, зародившиеся на севере Атлантического океана, движутся в Западную Европу. Наиболее часто они проходят через Великобританию, Балтийское море, Санкт-Петербург и далее на Урал и в Западную Сибирь или по Скандинавии, Кольскому полуострову и далее или к Шпицбергену, или по северной окраине Азии. Северотихоокеанские циклоны идут в северо-западную Америку, а также северо-восточную Азию. Тропические циклоны образуются на тропических фронтах чаще всего между 5º и 20º с. и ю. ш. Возникают они над океанами в конце лета и осенью, когда вода нагрета до температуры 27–28º С. Мощный подъем теплого и влажного воздуха приводит к выделению огромного количества теплоты при конденсации, что определяет кинетическую энергию циклона и низкое давление в центре. Циклоны двигаются с востока на запад по экваториальной периферии постоянных барических максимумов на океанах. Если тропический циклон достигает умеренных широт, он расширяется, теряет энергию и уже как внетропический циклон начинает двигаться с запада на восток. Скорость движения самого циклона небольшая (20–30 км/ч), но ветры в нем могут иметь скорость до 100 м/с (рис. 15).
Рис. 15. Распространение тропических циклонов
Основные районы возникновения тропических циклонов: восточное побережье Азии, северное побережье Австралии, Аравийское море, Бенгальский залив; Карибское море и Мексиканский залив. В среднем за год бывает около 70 тропических циклонов со скоростью ветра более 20 м/с. В Тихом океане тропические циклоны называются тайфунами, в Атлантическом – ураганами, у берегов Австралии – вилли-вилли. Термические депрессии возникают на суше из-за сильного перегрева участка поверхности, поднятия и растекания воздуха над ним. В результате у подстилающей поверхности образуется область пониженного давления. Антициклоны подразделяются на фронтальные, субтропические антициклоны динамического происхождения и стационарные. В умеренных широтах в холодном воздухе возникают фронтальные антициклоны, которые перемещаются сериями с запада на восток со скоростью 20–30 км/ч. Последний заключительный антициклон достигает субтропиков, стабилизируется и образует субтропический антициклон динамического происхождения. К ним относятся постоянные барические максимумы на океанах. Стационарный антициклон возникает над сушей в зимний период в результате сильного выхолаживания участка поверхности. Зарождаются и устойчиво держатся антициклоны над холодными поверхностями Восточной Арктики, Антарктиды, а зимой и Восточной Сибири. При прорыве арктического воздуха с севера зимой антициклон устанавливается над всей Восточной Европой, а иногда захватывает Западную и Южную. За каждым циклоном следует и перемещается с той же скоростью антициклон, который заключает собой всякую циклоническую серию. При движении с запада на восток циклоны испытывают отклонение к северу, а антициклоны – к югу в СП. Причина отклонений объясняется влиянием силы Кориолиса. Следовательно, циклоны начинают двигаться на северо-восток, а антициклоны на юго-восток. Благодаря ветрам циклонов и антициклонов наблюдается обмен между широтами теплом и влагой. В областях повышенного давления преобладают токи воздуха сверху вниз – воздух сухой, облаков нет; в областях пониженного давления – снизу вверх – образуются облака, выпадают осадки. Внедрение теплых воздушных масс называется «волнами тепла». Перемещение тропических воздушных масс в умеренные широты летом вызывает засуху, зимой – сильные оттепели. Внедрение арктических воздушных масс в умеренные широты – «волны холода» – вызывает похолодание. Местные ветры – ветры, возникающие на ограниченных участках территории в результате влияния местных причин. К местным ветрам термического происхождения относятся бризы, горно-долинные ветры, влияние рельефа вызывает образование фенов и бора. Бризы возникают на берегах океанов, морей, озер, там, где велики суточные колебания температур. В крупных городах сформировались городские бризы. Днем, когда суша нагрета сильнее, над ней возникает восходящее движение воздуха и отток его наверху в сторону более холодного. В приземных слоях ветер дует в сторону суши, это дневной (морской) бриз. Ночной (береговой) бриз возникает ночью. Когда суша охлаждается сильнее, чем вода, и в приземном слое воздуха ветер дует с суши на море. Морские бризы выражены сильнее, их скорость равна 7 м/с, полоса распространения – до 100 км. Горно-долинные ветры образуют ветры склонов и собственно горно-долинные и имеют суточную периодичность. Ветры склонов – результат различного нагрева поверхности склона и воздуха на той же высоте. Днем воздух на склоне нагревается сильнее, и ветер дует вверх по склону, ночью склон охлаждается тоже сильнее и ветер начинает дуть вниз по склону. Собственно горно-долинные ветры вызваны тем, что воздух в горной долине нагревается и охлаждается сильнее, чем на той же высоте на соседней равнине. Ночью ветер дует в сторону равнины, днем – в сторону гор. Обращенный в сторону ветра склон, называется наветренным, а противоположный – подветренным. Фен – теплый сухой ветер с высоких гор, часто покрытых ледниками. Возникает он благодаря адиабатическому охлаждению воздуха на наветренном склоне и адиабатическому нагреву – на подветренном склоне. Наиболее типичный фен возникает в случае, когда воздушное течение ОЦА переваливает через горный хребет. Чаще встречается антициклональный фен, он образуется в том случае, если над горной страной стоит антициклон. Фены наиболее часты в переходные сезоны, продолжительность их несколько суток (в Альпах в году 125 дней с фенами). В горах Тянь-Шаня подобные ветры называют кастек, в Средней Азии – гармсиль, в Скалистых горах – чинук. Фены вызывают раннее цветение садов, таяние снега. Бора – холодный ветер, дующий с невысоких гор в сторону теплого моря. В Новороссийске он называется норд-остом, на Апшеронском полуострове – нордом, на Байкале – сармой, в долине Роны (Франция) – мистралью. Возникает бора зимой, когда перед хребтом, на равнине, образуется область повышенного давления, где формируется холодный воздух. Перевалив невысокий хребет, холодный воздух устремляется с большой скоростью в сторону теплой бухты, где давление низкое, скорость может достигать 30 м/с, температура воздуха резко падает до –5ºС. К мелкомасштабным вихрям относятся смерчи и тромбы (торнадо). Вихри над морем называются смерчами, над сушей – тромбами. Зарождаются смерчи и тромбы обычно в тех же местах, что и тропические циклоны, в жарком влажном климате. Основным источником энергии служит конденсация водяных паров, при которой выделяется энергия. Большое число торнадо в США объясняется приходом влажного теплого воздуха с Мексиканского залива. Вихрь двигается со скоростью 30–40 км/ч, но скорость ветра в нем достигает 100 м/с. Тромбы возникают обычно поодиночке, вихри – сериями. В 1981 г. у побережья Англии в течение пяти часов сформировалось 105 смерчей. Понятие о воздушных массах (ВМ). Анализ вышеизложенного показывает, что тропосфера не может быть физически однородной во всех своих частях. Она разделяется, не переставая быть единой и цельной, на воздушные массы – крупные объемы воздуха тропосферы и нижней стратосферы, обладающие относительно однородными свойствами и движущиеся как единое целое в одном из потоков ОЦА. Размеры ВМ сопоставимы с частями материков, протяженность тысячи километров, мощность – 22–25 км. Территории, над которыми формируются ВМ, называются очагами формирования. Они должны обладать однородной подстилающей поверхностью (суша или море), определенными тепловыми условиями и временем, необходимым для их образования. Подобные условия существуют в барических максимумах над океанами, в сезонных максимумах над сушей. Типичные свойства ВМ имеет только в очаге формирования, при перемещении она трансформируется, приобретая новые свойства. Приход тех или иных ВМ вызывает резкие смены погоды непериодического характера. По отношению к температуре подстилающей поверхности ВМ делят на теплые и холодные. Теплая ВМ перемещается на холодную подстилающую поверхность, она приносит потепление, но сама охлаждается. Холодная ВМ приходит на теплую подстилающую поверхность и приносит похолодание. По условиям образования ВМ подразделяют на четыре типа: экваториальные, тропические, полярные (воздух умеренных широт) и арктические (антарктическая). В каждом типе выделяется два подтипа – морской и континентальный. Для континентального подтипа, образующегося над материками, характерна большая амплитуда температур и пониженная влажность. Морской подтип формируется над океанами, следовательно, относительная и абсолютная влажность у него повышены, амплитуды температур значительно меньше континентальных. Экваториальные ВМ образуются в низких широтах, характеризуются высокими температурами и большой относительной и абсолютной влажностью. Эти свойства сохраняются и над сушей и над морем. Тропические ВМ формируются в тропических широтах, температура в течение года не опускается ниже 20º С, относительная влажность невелика. Выделяют: – континентальные ТВМ, формирующиеся над материками тропических широт в тропических барических максимумах – над Сахарой, Аравией, Тар, Калахари, а летом в субтропиках и даже на юге умеренных широт – на юге Европы, в Средней Азии и Казахстане, в Монголии и Северном Китае; – морские ТВМ, образующиеся над тропическими акваториями – в Азорском и Гавайском максимумах; характеризуются высокой температурой и влагосодержанием, но низкой относительной влажностью. Полярные ВМ, или воздух умеренных широт, образуются в умеренных широтах (в антициклонах умеренных широт из арктических ВМ и воздуха, пришедшего из тропиков). Температуры зимой отрицательные, летом положительные, годовая амплитуда температур значительна, абсолютная влажность увеличивается летом и уменьшается зимой, относительная влажность средняя. Выделяют: – континентальный воздух умеренных широт (кУВ), который формируется над обширными поверхностями континентов умеренных широт, зимой сильно охлажден и устойчив, погода в нем ясная с сильными морозами; летом сильно прогревается, в нем возникают восходящие токи; – морской воздух умеренных широт (мУВ), формируется над океанами в средних широтах; западными ветрами и циклонами перено
|
|||||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 3076; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.117.107 (0.015 с.) |