Тепловые процессы в атмосфере 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тепловые процессы в атмосфере



К климатообразующим процессам относятся теплооборот, влагооборот и циркуляция атмосферы.

Теплооборот обеспечивает тепловой режим атмосферы и зависит от радиационного баланса, т.е. притоков теплоты, приходящих на земную поверхность (в форме лучистой энергии) и уходящих от нее (лучистая энергия, поглощенная Землей, преобразуется в тепловую).

Солнечная радиация – поток электромагнитного излучения, поступающий от Солнца. Энергетическую освещенность солнечной радиации, падающей на верхней границе атмосферы на единицу площади перпендикулярной к солнечным лучам, при среднем расстоянии Земли от Солнца называют солнечной постоянной. Смысл слова «постоянная» в том, что эта величина относится к радиации, на которую атмосфера еще не повлияла. Таким образом, солнечная постоянная зависит только от излучательной способности Солнца и от расстояния Земли до Солнца. Величина солнечной постоянной составляет 1 367 Втм-2, при этом среднее расстояние Земли от Солнца принято равным 149,6 млн. км.

Количество солнечной радиации, получаемое Землей, зависит:

1) от расстояния между Землей и Солнцем (ближе всего к Солнцу Земля в начале января, дальше всего в начале июля; разница между двумя этими расстояниями – 5 млн. км, вследствие чего Земля в первом случае получает на 3,4 % больше, а во втором на 3,5 % меньше радиации, чем при среднем расстоянии от Земли до Солнца: в начале апреля и в начале октября);

2) от угла падения солнечных лучей на земную поверхность, зависящего, в свою очередь, от географической широты, высоты солнца над горизонтом (меняющейся в течение суток и по временам года), характера рельефа земной поверхности;

3) от преобразования лучистой энергии в атмосфере (рассеяние, поглощение, отражение обратно в мировое пространство) и на поверхности земли. Среднее альбедо Земли – 43 %.

Поглощается около 17 % всей радиации. Озон, кислород, азот поглощают в основном коротковолновые ультрафиолетовые лучи, водяной пар и углекислый газ – длинноволновую ифракрасную радиацию. Атмосфера рассеивает 28 % радиации; к земной поверхности поступает 21 %, в космос уходит 7 %. Та часть радиации, которая поступает к земной поверхности от всего небесного свода, называется рассеянной радиацией. Сущность рассеяния заключается в том, что частица, поглощая электромагнитные волны, сама становится источником излучения света и излучает те же волны, которые на нее падают. Молекулы воздуха очень малы, по размерам сопоставимы с длиной волн голубой части спектра. В чистом воздухе преобладает молекулярное рассеивание, следовательно, цвет неба – голубой. При запыленном воздухе цвет неба становится белесым. Цвет неба зависит от содержания примесей в атмосфере. При большом содержании водяного пара, рассеивающего красные лучи небо приобретает красноватый оттенок. С рассеянной радиацией связаны явления сумерек, белых ночей, т.к. после захода Солнца за горизонт верхние слои атмосферы еще продолжают освещаться.

Верхняя граница облаков отражает около 24 % радиации. Следовательно, к земной поверхности в виде потока лучей подходит около 31 % всей солнечной радиации, поступившей на верхнюю границу атмосферы, она называется прямой радиацией. Сумма прямой и рассеянной радиации (52 %) называется суммарной радиацией. Соотношение между прямой и рассеянной радиацией меняется в зависимости от облачности, запыленности атмосферы и высоты Солнца. Распределение суммарной солнечной радиации по земной поверхности зонально. Наибольшая суммарная солнечная радиация (840–920 кДж/см2 в год) наблюдается в тропических широтах Северного полушария (СП), что объясняется небольшой облачностью и большой прозрачностью воздуха. На экваторе суммарная радиация снижается до 580–670 кДж/см2в год из-за большой облачности и уменьшения прозрачности из-за большой влажности. В умеренных широтах величина суммарной радиации составляет 330–500 кДж/см2 в год, в полярных широтах – 250 кДж/см2 в год, причем в Антарктиде из-за большой высоты материка и небольшой влажности воздуха она немного больше.

Суммарная солнечная радиация, поступившая на земную поверхность, частично отражается обратно. Отношение отраженной радиации к суммарной, выраженное в процентах, называется альбедо. Альбедо характеризует отражательную способность поверхности и зависит от ее цвета, влажности и других свойств.

Наибольшей отражательной способностью обладает свежевыпавший снег – до 90 %. Альбедо песков 30–35 %, травы – 20 %, лиственного леса – 16–27 %, хвойного – 6–19 %; сухой чернозем имеет альбедо 14 %, влажный – 8 %. Альбедо Земли как планеты принимают равным 35 %.

Поглощая радиацию, Земля сама становится источником излучения. Тепловое излучение Земли – земная радиация – является длинноволновым, т.к. длина волны зависит от температуры: чем выше температура излучающего тела, тем короче длина волны испускаемых им лучей. Излучение земной поверхности нагревает атмосферу, и она сама начинает излучать радиацию в мировое пространство (встречное излучение атмосферы) и к земной поверхности. Встречное излучение атмосферы тоже длинноволновое. В атмосфере встречаются два потока длинноволновой радиации – излучение поверхности (земная радиация) и излучение атмосферы. Разность между ними, определяющая фактическую потерю теплоты земной поверхностью, называется эффективным излучением, оно направлено в Космос, т.к. земное излучение больше. Эффективное излучение больше днем и летом, т.к. зависит от нагрева поверхности. Эффективное излучение зависит от влажности воздуха: чем больше в воздухе водяных паров или капелек воды, тем излучение меньше. Поэтому зимой в пасмурную погоду всегда теплее, чем в ясную. В целом для Земли эффективное излучение равно 190 кДж/см2 в год (наибольшее в тропических пустынях – 380, наименьшее в полярных широтах – 85 кДж/см2 в год).

Земля одновременно получает радиацию и отдает ее. Разность между получаемой и расходуемой радиацией называется радиационным балансом, или остаточной радиацией. Приход радиационного баланса поверхности составляет суммарная радиация (Q) и встречное излучение атмосферы. Расход – отраженная радиация (Rk) и земное излучение. Разность между земным излучением и встречным излучением атмосферы – эффективное излучение (Еэф) имеет знак минус и является частью расхода в радиационном балансе:

Rб = Q – Eэф – Rk

Радиационный баланс распределяется зонально: уменьшается от экватора к полюсам. Наибольший радиационный баланс свойственен экваториальным широтам и составляет 330–420 кДж/см2 в год, в тропических широтах он снижается до 250–290 кДж/см2 в год (объясняется возрастанием эффективного излучения), в умеренных широтах радиационный баланс уменьшается до 210–85 кДж/см2 в год, в полярных широтах его величина приближается к нулю. Общая особенность радиационного баланса в том, что над океанами на всех широтах радиационный баланс выше на 40–85 кДж/см2, т.к. альбедо воды и эффективное излучение океана меньше.

Приходную часть радиационного баланса атмосферы (Rб) составляют эффективное излучение (Еэф) и поглощенная солнечная радиация (Rп), расходная часть определяется атмосферной радиацией, уходящей в космос (Еа):

–Rб = Еэф – Еа + Rп

 

Радиационный баланс атмосферы отрицательный, а поверхности – положительный. Суммарный радиационный баланс атмосферы и земной поверхности равен нулю, т.е. Земля находится в состоянии лучистого равновесия.

Тепловой баланс – алгебраическая сумма потоков теплоты, приходящих на земную поверхность в виде радиационного баланса и уходящих от нее. Он складывается из теплового баланса поверхности и атмосферы. В приходной части теплового баланса земной поверхности стоит радиационный баланс, в расходной – затраты теплоты на испарение, на нагрев атмосферы от Земли, на нагрев почв. Расходуется теплота также на фотосинтез, почвообразование, но эти затраты не превышают 1 %. Следует отметить, что над океанами больше затраты теплоты на испарение, в тропических широтах – на нагрев атмосферы.

В тепловом балансе атмосферы приходную часть составляет теплота, выделившаяся при конденсации водяных паров, и переданная от поверхности в атмосферу; расход складывается из отрицательного радиационного баланса. Тепловой баланс земной поверхности и атмосферы равен нулю, т.е. Земля находится в состоянии теплового равновесия.

Тепловой режим земной поверхности. Непосредственно солнечными лучами нагревается земная поверхность, а уже от нее – атмосфера. Поверхность, получающая и отдающая теплоту, называется деятельной поверхностью. В температурном режиме поверхности выделяется суточный и годовой ход температур. Суточный ход температур поверхности изменение температуры поверхности в течение суток. Суточный ход температур поверхности суши (сухой и лишенной растительности) характеризуется одним максимумом около 13 ч и одним минимумом – перед восходом Солнца. Дневные максимумы температуры поверхности суши могут достигать 80º С в субтропиках и около 60º С в умеренных широтах.

Разница между максимальной и минимальной суточной температурой поверхности называется суточной амплитудой температуры. Суточная амплитуда температуры может летом достигать 40º С, зимой амплитуда суточных температур наименьшая – до 10º С.

Годовой ход температуры поверхности – изменение среднемесячной температуры поверхности в течение года, обусловлен ходом солнечной радиации и зависит от широты места. В умеренных широтах максимум температур поверхности суши наблюдается в июле, минимум – в январе; на океане максимумы и минимумы запаздывают на месяц.

Годовая амплитуда температур поверхности равна разнице между максимальными и минимальными среднемесячными температурами; возрастает с увеличением широты места, что объясняется возрастанием колебаний величины солнечной радиации. Наибольших значений годовая амплитуда температур достигает на континентах; на океанах и морских берегах значительно меньше. Самая маленькая годовая амплитуда температур отмечается в экваториальных широтах (2–3º), самая большая – в субарктических широтах на материках (более 60º).

Тепловой режим атмосферы. Атмосферный воздух незначительно нагревается непосредственно солнечными лучами. Т.к. воздушная оболочка свободно пропускает солнечные лучи. Атмосфера нагревается от подстилающей поверхности. Теплота в атмосферу передается конвекцией, адвекцией и конденсацией водяного пара. Слои воздуха, нагреваясь от почвы, становятся более легкими и поднимаются вверх, а более холодный, следовательно, более тяжелый воздух опускается вниз. В результате тепловой конвекции идет прогревание высоких слоев воздуха. Второй процесс передачи теплоты – адвекция – горизонтальный перенос воздуха. Роль адвекции заключается в передаче теплоты от низких широт к высоким. В зимний сезон тепло передается от океанов к материкам. Конденсация водяного пара – важный процесс, осуществляющий передачу теплоты высоким слоям атмосферы – при испарении теплота забирается от испаряющей поверхности, при конденсации в атмосфере эта теплота выделяется.

С высотой температура убывает. Изменение температуры воздуха на единицу расстояния называется вертикальным температурным градиентом. В среднем он равен 0,6º на 100 метров. Вместе с тем, ход этого убывания в разных слоях тропосферы разный: 0,3–0,4º до высоты 1,5 км; 0,5–0,6º – между высотами 1,5–6 км; 0,65–0,75º – от 6 до 9 км и 0,5–0,2º – от 9 до 12 км. В приземном слое (толщиной 2 м) градиенты при пересчете на 100 м исчисляются сотнями градусов. В поднимающемся воздухе температура изменяется адиабатически. Адиабатический процесс – процесс изменения температуры воздуха при его вертикальном движении без теплообмена с окружающей средой (в одной массе, без обмена теплом с другими средами).

В описанном распределении температуры по вертикали нередко наблюдаются исключения. Бывает, что верхние слои воздуха теплее нижних, прилегающих к земле. Явление это называется температурной инверсией (увеличение температуры с высотой). Чаще всего инверсия является следствием сильного охлаждения приземного слоя воздуха, вызванного сильным охлаждением земной поверхности в ясные тихие ночи, преимущественно зимой. При пересеченном рельефе холодные массы воздуха медленно стекают вдоль склонов и застаиваются в котловинах, впадинах и т.п. Инверсии могут образовываться и при движении воздушных масс из теплых областей в холодные, так как при натекании подогретого воздуха на холодную подстилающую поверхность его нижние слои заметно охлаждаются (инверсия сжатия).



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 437; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.218.147 (0.013 с.)