Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Регрессионный анализ. Зависимые и независимые переменныеСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Регрессионный анализ предназначен для исследования зависимости исследуемой переменной от различных факторов и отображения их взаимосвязи в форме регрессионной модели. В регрессионных моделях зависимая (объясняемая) переменная Y может быть представлена в виде функции f (), где - независимые (объясняющие) переменные, или факторы. Связь между переменной Y иk независимыми факторами Х можно охарактеризовать функцией регрессии Y= f (), которая показывает, каково будет в среднем значение переменной yi, если переменные Xi примут конкретные значения. Данное обстоятельство позволяет использовать модель регрессии не только для анализа, но и для прогнозирования экономических явлений. Сформулируем регрессионную задачу для случая одного факторного признака. Пусть имеется набор значений двух переменных: Y= - объясняемая переменная и X= - объясняющая переменная, каждая из которых содержит n наблюдений. Пусть между переменными X= и Y= теоретически существует некоторая линейная зависимость Данное уравнение будем называть «истинным» уравнением регрессии. Однако в действительности между X и Y наблюдается не столь жесткая связь. Отдельные наблюдения будут отклоняться от линейной зависимости в силу воздействия различных причин. Обычно зависимая переменная находится под влиянием целого ряда факторов, в том числе и не известных исследователю, а также случайных причин (возмущения и помехи); существенным источником отклонений в ряде случаев являются ошибки измерения. Отклонения от предполагаемой формы связи, естественно, могут возникнуть и в силу неправильного выбора вида самого уравнения, описывающего эту зависимость. Учитывая возможные отклонения, линейное уравнение связи двух переменных (парную регрессию) представим в виде , (2) где - постоянная величина (или свободный член уравнения), - коэффициент регрессии, определяющий наклон линии, вдоль которой рассеяны данные наблюдений. Это показатель, характеризующий изменение переменной , при изменении значения на единицу. Если - переменные и положительно коррелированные, если < 0 – отрицательно коррелированны; - случайная переменная, или случайная составляющая, или остаток, или возмущение. Она отражает тот факт, что изменение будет неточно описываться изменением Х – присутствуют другие факторы, неучтенные в данной модели. Таким образом, в уравнении (2) значение каждого наблюдения представлено как сумма двух частей — систематической и случайной . В свою очередь систематическую часть можно представить в виде уравнения Можно сказать, что общим моментом для любой эконометрической модели является разбиение зависимой переменной на две части — объясненную и случайную. . Предпосылки применения МНК. Свойства коэффициентов регрессии существенным образом зависят от свойств случайной составляющей. Для того чтобы регрессионный анализ, основанный на обычном методе наименьших квадратов, давал наилучшие из всех возможных результаты, должны выполняться следующие условия, известные как условия Гаусса – Маркова. 1. Математическое ожидание случайной составляющей в любом наблюдении должно быть равно нулю. Иногда случайная составляющая будет положительной, иногда отрицательной, но она не должна иметь систематического смещения ни в одном из двух возможных направлений. 2. В модели () возмущение (или зависимая переменная ) есть величина случайная, а объясняющая переменная - величина неслучайная. Если это условие выполнено, то теоретическая ковариация между независимой переменной и случайным членом равна нулю. 3. предполагает отсутствие систематической связи между значениями случайной составляющей в любых двух наблюдениях. Например, если случайная составляющая велика и положительна в одном наблюдении, это не должно обусловливать систематическую тенденцию к тому, что она будет большой и положительной в следующем наблюдении. Случайные составляющие должны быть независимы друг от друга. В силу того, что , данное условие можно записать следующим образом: Возмущения не коррелированны (условие независимости случайных составляющих в различных наблюдениях). Это условие означает, что отклонения регрессии (а значит, и сама зависимая переменная) не коррелируют. Условие некоррелируемости ограничительно, например, в случае временного ряда . Тогда третье условиеозначает отсутствие автокорреляции ряда . 4. дисперсия случайной составляющей должна быть постоянна для всех наблюдений. Эта постоянная дисперсия обычно обозначается , или часто в более краткой форме , а условие записывается следующим образом: Величина , конечно, неизвестна. Одна из задач регрессионного анализа состоит в оценке стандартного отклонения случайной составляющей. Это условие гомоскедастичности, или равноизменчивости случайной составляющей (возмущения). Предположение о нормальности Наряду с условиями Гаусса— Маркова обычно также предполагается нормальность распределения случайного члена. Дело в том, что если случайный член нормально распределен, то так же будут распределены и коэффициенты регрессии. Свойства оценок МНК В тех случаях, когда предпосылки выполняются, оценки, полученные по МНК, будут обладать свойствами несмещенности, состоятельности и эффективности. Несмещенность оценки означает, что математическое ожидание остатков равно нулю. Если оценки обладают свойством несмещенности, то их можно сравнивать по разным исследованиям. Для практических целей важна не только несмещенность, но и эффективность оценок. Оценки считаются эффективными, если они характеризуются наименьшей дисперсией. Поэтому несмещенность оценки должна дополняться минимальной дисперсией. Степень достоверности доверительных интервалов параметров регрессии обеспечивается, если оценки будут не только несмещенными и эффективными, но и состоятельными. Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки.
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 792; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.207.11 (0.01 с.) |