Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Трансмембранная передача гормонального сигнала

Поиск

Клеточные мембраны благодаря наличию специальных рецепторов воспринимают сигналы из внешней среды (например, молекулы гормонов, называемые первичными мессенджерами, или посредниками). Первый этап действия гормона на клетку-мишень - его присоединение к рецептору, далее сигнал передается внутрь клетки. По своей химической природе рецепторы почти всех биологически активных веществ являются гликопротеинами. Общее свойство рецепторов - высокая специфичность по отношению к одному определенному гормону.

Наиболее изученной является аденилатциклазная мессенджерная система (рис. 29).В нее входят рецептор гормона, G-белок, фермент аденилатциклаза, цАМФ-зависимая протеинкиназа, фосфодиэстераза.

Рецепторы гидрофильных гормонов, таких как адреналин, расположены на мембране. Связывание гормона (первичного мессенджера) с рецептором приводит к структурным изменениям внутриклеточного домена рецептора, что обеспечивает взаимодействие рецептора с ГТФ-связывающим белком (G-белком). G-белок представляет собой смесь 2 типов белков: активного Gs (от англ. stimulatory) и ингибиторного Gi. В составе каждого из них имеется три субъединицы (α, β и γ). Функция G-белка - проведение гормонального сигнала на уровне плазматической мембраны. В состоянии покоя G-белок связан с ГДФ. Гормонрецепторный комплекс переводит Gs-белок в активированное состояние, ГДФ замещается на ГТФ, что приводит к отделению субъединицы α, которая активирует аденилатциклазу. В отсутствие G-белка аденилатциклаза практически неактивна.

Аденилатциклаза- интегральный белок плазматических мембран, его активный центр ориентирован в сторону цитоплазмы. Аденилатциклаза катализирует реакцию синтеза из АТФ цАМФ (вторичного мессенджера).

Протеинкиназа А катализирует фосфорилирование внутриклеточных ферментов или белков-мишеней, изменяя их активность. Неактивная протеинкиназа А состоит из 4 субъединиц. Под действием цАМФ она переходит в активную форму за счет диссоциации субъединиц и фосфорилирует белок за счет АТФ. Процесс фосфорилирования-дефосфорилирования белков при участии протеинкиназ является общим фундаментальным механизмом действия вторичных мессенджеров внутри клетки.

Фосфодиэстераза вызывает распад цАМФ и тем самым прекращает действие сигнала.

Рис. 29. Аденилатциклазная мессенджерная система

Инозитолфосфатная система (рис. 30)включает три основных мембранных белка: рецептор гормона, фосфолипазу С и белок Gplc, активирующий фосфолипазу.

 

Рис. 30. Инозитолфосфатная мессенджерная система

Связывание гормона с рецептором приводит к изменению его конформации и увеличению сродства с белком Gplc. Он представляет собой тример, состоящий из субъединиц α, β и γ. При участии ГТФ комплекс «гормон - рецептор – G-белок» диссоциирует с освобождением a-субъединицы. Она взаимодействует с фосфолипазой С и активирует ее. Субстрат этого фермента – фосфатидилинозитол-4,5-бисфосфат (ФИФ). В инозитолфосфатной системе в роли вторичных мессенджеров участвуют инозитол-1,4,5-трисфосфат (ИФ-3), диацилглицерин (ДАГ) и ионы Са2+. ИФ-3 выходит в цитозоль. ДАГ остается в мембране и участвует в активации фермента протеинкиназы С. ИФ-3 связывается с кальциевым каналом мембраны ЭПР, канал открывается, и ионы Са2+ поступают в цитозоль. Увеличивается скорость взаимодействия ионов Са2+ с неактивной протеинкиназой С и белком кальмодулином.

На внутренней стороне мебраны образуется комплекс «протеинкиназа С - Са2+ - ДАГ – фосфолипаза С». Происходит активирование протеинкиназы С, которая фосфорилирует ферменты по остаткам серина и треонина, меняя их активность.

Кальмодулин имеет 4 центра для связывания Са2+. Взаимодействие комплекса «кальмодулин - Са2+» с ферментами приводит к их активации.

Аденилатциклазная и инозитолфосфатная системы регулируют большое количество разных клеточных процессов. Эффект этих систем проявляется очень быстро.

Стероидные и тиреоидные гормоны обладают липофильными свойствами и легко проходят через клеточные мембраны. Их рецепторы находятся в цитозоле или в ядре клетки (внутриклеточные рецепторы).

Если рецептор гормона находится в цитозоле, там же происходит образование комплекса гормона с рецептором, который затем поступает в ядро. Рецепторы ряда гормонов расположены в ядре клетки, тогда комплекс «гормон – рецептор» может образоваться непосредственно в ядре (рис. 31).

Рис. 31. Передача гормональных сигналов через внутриклеточные рецепторы  

В ядре комплекс гормон-рецептор взаимодействует с регуляторной нуклеотидной последовательностью ДНК, что приводит к изменению скорости транскрипции структурных генов и, следовательно, скорости трансляции. В результате изменяется количество белков, которые участвуют в метаболизме и влияют на функциональное состояние клетки.

Эффекты гормонов, которые передают сигнал через внутриклеточные рецепторы, нельзя наблюдать сразу, так как на протекание матричных процессов (транскрипцию и трансляцию) требуются часы.

Гормоны обеспечивают коммуникацию (обмен информацией) между разными клетками и органами. В результате действия этих механизмов достигается координация метаболизма и функций разных клеток и органов и адекватная реакция организма на изменения внешней среды.

В роли внеклеточных сигналов могут действовать не только гормоны, но и ряд других веществ - цитокины, биогенные амины, нейромедиаторы и др.

Контрольные вопросы

1. Как классифицируют гормоны по их химической природе? Приведите примеры гормонов каждого из классов.

2. Каким образом гормоны могут влиять на протекание химических процессов в клетке?

3. Что понимают под первичными и вторичными мессенджерами?

4. Охарактеризуйте основные компоненты и механизм действия аденилатциклазной мессенджерной системы.

5. Какие белки являются компонентами аденилатциклазной мессенджерной системы?

6. Какие соединения являются вторичными мессенджерами в инозитолфосфатной системе?

7. Дайте сравнительную характеристику аденилатциклазной и инозитолфосфатной мессенджерной системам.

8. Каков механизм дейcтвия липофильных гормонов на процессы, протекающие внутри клетки?

9. Каким образом прекращается передача гормонального сигнала в клетку?

10. Какие химические соединения, кроме гормонов, могут участвовать в регуляции обменных процессов в клетках?


ВВЕДЕНИЕ В МЕТАБОЛИЗМ

Метаболизм (от греч. «превращение, изменение») или обмен веществ - совокупность химических реакций, протекающих в живом организме, и обеспечивающих его жизнедеятельность.

Обмен веществ состоит из двух противоположных, одновременно протекающих процессов.

Катаболизм – совокупность процессов, связанных с распадом веществ, их окислением и выведением из организма продуктов распада (СО2, Н2О, мочевина), при этом выделяется энергия (экзергонические реакции).

Органоиды катаболической системы – митохондрии, лизосомы, пероксисомы.

Анаболизм – совокупность реакций синтеза необходимых для оранизма веществ, их использование для роста, развития и жизнедеятельности организма; при этом, как правило, затрачивается энергия (эндергонические реакции).

Органоиды анаболической системы – эндоплазматический ретикулум, комплекс Гольджи, рибосомы.

Метаболиты - продукты метаболизма каких-либо соединений.

Метаболические пути - последовательное превращений одних веществ в другие, одного метаболита - в другой.

В метаболическом пути обычно есть реакция, протекающая с меньшей скоростью, чем все остальные - это лимитирующая стадия (реакция). Она определяет общую скорость превращения исходного вещества в конечный продукт метаболической цепи.

Фермент, катализирующий лимитирующую реакцию, называется регуляторным.

Взаимопревращения веществ определяются физиологическими потребностями организма. Реакции метаболизма, в основном, обратимы - их направление определяется расходом или удалением продукта.

При неизменных условиях концентрация ряда метаболитов в клетках и внеклеточных жидкостях постоянна. При заболеваниях стационарные концентрации метаболитов специфически меняются. На этом основаны биохимические методы лабораторной диагностики болезней.

 

ОБЩАЯ СХЕМА КАТАБОЛИЗМА

Основными веществами, обеспечиващими организм человека энергией, являются углеводы и жиры. Меньшее значение имеют белки, однако при преимущественно белковом питании и при голодании их роль значительно возрастает. При расщеплении 1 г веществ выделяется энергии, кДж: углеводов – 17; жиров – 39; белков – 17.

I этап катаболизма – гидролитический. Под воздействием гидролаз в пищеварительном тракте белки, жиры, углеводы распадаются на соответствующие мономеры (рис. 32).

II этап – специфические пути катаболизма. Мономеры основных пищевых веществ при участии ферментов, специфичных для каждого метаболита, превращаются в основном в два метаболита - пировиноградную кислоту (ПВК) и ацетил-KоА. Ацетил-KоА (ацетилкоэнзим А) - макроэргический продукт конденсации коэнзима А с уксусной кислотой.

Реакции специфических путей катаболизма протекают внутри клеток. На этом этапе высвобождается 1/3 энергии питательных веществ.

III этап - общий путь катаболизма. После образования ПВК дальнейший путь распада веществ до СО2 и Н2О происходит одинаково в общем пути катаболизма. Он включает два процесса:

1) окислительное декарбоксилирование ПВК;

2) цикл Кребса (цикл трикарбоновых кислот (ЦТК), цитратный цикл).

В общем пути катаболизма образуются первичные доноры водорода для цепи переноса электронов (дыхательной цепи). Реакции общего пути катаболизма происходят в матриксе митохондрий, и восстановленные коферменты передают водород непосредственно на компоненты дыхательной цепи, расположенные во внутренней мембране митохондрий, где образуется АТФ.

На этом этапе высвобождается 2/3 энергии питательных веществ.

Рис. 32. Общая схема катаболизма

 

БИОЭНЕРГЕТИКА

Одна из основных функций катаболизма - извлечение химической энергии из содержащихся в пище веществ и использование этой энергии на обеспечение необходимых функций.

Энергия окисляющихся веществ используется для синтеза АТФ из АДФ.

Если энергия, освобождающаяся при реакции гидролиза вещества, превышает 30 кДж/моль, то гидролизуемую связь называют высокоэнергетической (макроэргической). Примеры макроэргических соединений – ацетилКоА, креатинфосфат, фосфоенолпируват и др. Однако АТФ – универсальный источник энергии в организме. Энергия гидролиза АТФ в среднем 50 кДж/моль. Макроэргическая связь в формуле обозначается знаком «~» (тильда).

АТФ

Один из путей синтеза АТФ из АДФ - субстратное фосфорилирование - образование АТФ за счет энергии другого макроэргического соединения. Такой тип энергетического обеспечения клетки может происходить в бескислородных условиях, например, распад глюкозы до молочной кислоты:

С6Н12О6 = 2С3Н6О3 + 65 кДж/моль.

Одной из реакций данного многостадийного процесса является реакция субстратного фосфорилирования – синтеза АТФ за счет макроэргической связи 1,3-дифосфоглицерата:

Использование клетками кислорода открывает возможности для более полного окисления субстратов.

Тканевое дыхание - совокупность реакций окисления субстратов в живых клетках, сопровождающихся потреблением молекулярного кислорода и приводящих к выделению углекислого газа и воды и образованию биологических видов энергии.

Впервые сущность дыхания объяснил Антуан Лоран Лавуазье (1777), обративший внимание на сходство между горением органических веществ вне организма и дыханием животных. В организме окисление протекает при относительно низкой температуре в присутствии воды, и его скорость регулируется обменом веществ.

Рассмотрим реакцию окисления глюкозы:

С6Н12О6 + 6О2 = 6СО2 + 6Н2О + 2780 кДж/моль.

В организме этот процесс протекает многостадийно. Углерод превращается в диоксид углерода за счет кислорода самого окисляемого вещества и кислорода воды. В реакции участвуют акцепторы водорода, которые переносят его на кислород. Кислород используется для синтеза воды за счет водорода окисляемых субстратов.

С6Н12О6 + 6Н2О + 12А = 6СО2 + 12АН2

12АН2 + 6О2 = 12Н2О + 12А

______________________________________

С6Н12О6 + 6О2 = 6СО2 + 6Н2О

Таким же способом окисляются и другие вещества. Наибольшей скоростью тканевого дыхания характеризуются почки, мозг, печень, наименьшей - кожа, мышечная ткань (в покое).

Главный путь синтеза АТФ из АДФ - окислительное фосфорилирование –синтез АТФ из АДФ и неорганического фосфата, происходящий благодаря энергии, выделяющейся при окислении органических веществ в процессе клеточного дыхания, т.е. сопряжение дыхания и фосфорилирования. В упрощенном виде сущность процесса передает следующее уравнение:

АДФ + Н3РО4 + энергия ® АТФ + Н2О.



Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 403; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.120.112 (0.007 с.)