Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Закономерности моно- и полигенного наследования менделирующих признаков. Закон единообразия, закон расщепления признаков, гипотеза «чистоты гамет». Дигибридное и полигибридное скрещивания.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Генетические процессы являются определяющими в онтогенезе всех живых организмов. Индивидуальное развитие любого организма определяется его генотипом. Из поколения в поколение через половые клетки передается информация обо всех многообразных морфологических, физиологических и биохимических признаках, которые реализуются у потомков. Наследование – способ передачи наследственной информации в поколениях при половом размножении или бесполом. Различают два основных типа наследования – моногенное и полигенное. При моногенном – признак контролируется одним геном, при полигенном – несколькими генами. Гены могут быть локализованы в аутосомах или половых хромосомах. Характер проявления гена может идти по доминантному или рецессивному пути (Рис. 5). Гены могут быть локализованы в разных хромосомах или хромосомы представляют группу сцепления генов, поэтому наследование может быть: независимое, сцепленное и неполностью сцепленное.
Рис. 5 — Типы и варианты наследования признаков Основные процессы, характеризующие закономерности наследования: 1) самовоспроизведение 2) независимое распределение хромосом при гаметогенезе и их случайное сочетание при оплодотворении. 3) генный контроль в процессе онтогенеза. Закономерности моногенного наследования были открыты Г. Менделем, который разработал гибридологический метод (получение гибридов путем скрещивания), изложенный в 1868г. в работе «Опыты над растительными гибридами». Мендель положил в основу совершенно новый принцип исследования отдельных пар признаков в потомстве скрещиваемых организмов одного вида, отличающихся по 1, 2, 3 парам контрастных (альтернативных) признаков, который был назван гибридологическим методом. Особенности этого метода заключаются в использовании определенных принципов: 1. Скрещиваемые родительские пары должны быть чистыми линиями (гомозиготными). 2. В каждом поколении необходимо вести учет отдельно по каждой паре альтернативных признаков, без учета других различий между скрещиваемыми организмами. 3. Использование количественного учета гибридных организмов, различающихся по отдельным парам альтернативных признаков в ряду последовательных поколений. 4. Применение индивидуального анализа потомства от каждого гибридного организма. Мендель предложил обозначить наследственные задатки (гены) буквами латинского алфавита. Гены, от которых зависит развитие альтернативного признака, принято называть аллеломорфными или аллельными. Аллельные гены расположены в одинаковых локусах гомологичных хромосом. Каждый ген может иметь два состояния – доминантное и рецессивное. Явление преобладания у потомка первого поколения признака одного из родителей Мендель назвал доминированием. Признак, подавляемый у гибрида, получил название рецессивного. Доминантный ген принято обозначать большой буквой латинского алфавита (А), а рецессивный – малой (а). Организмы, имеющие одинаковые аллели одного гена, например, обе доминантные (АА) или обе рецессивные (аа) называются гомозиготами. Организмы, имеющие разные аллели одного гена – одну доминантную, другую рецессивную (Аа) называют гетерозиготными, или гетерозиготами. Если же организм имеет только один аллель гена, то тогда говорят, что такой организм гемизиготный. При написании схемы скрещивания принято на первом месте ставить женский организм, на втором месте – мужской. Скрещивание обозначают знаком умножения (х). Родительские особи записываются в первой строчке и обозначаются буквой " Р ". Гаметы, которые образуют родители, записываются во второй строчке и обозначаются буквой " G ", а образующееся потомство – в третьей. Его называют гибридами и обозначают буквой " F " с цифровым индексом, соответствующим порядковому номеру гибридного поколения. Скрещивание особей по одному альтернативному признаку называется моногибридным. Первый закон Менделя – закон единообразия гибридов 1-го поколения или доминирования: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все гибриды первого поколения единообразны как по генотипу, так и по фенотипу. Р: ♀ AA x ♂ aa G: A a
F1: Aa На основании изучения гибридов 2-го поколения Менделем был сформулирован второй закон – расщепления: при скрещивании двух гетерозиготных особей (т.е. гибридов), анализируемых по одной альтернативной паре признаков, в потомстве ожидается расщепление по фенотипу в отношении 3:1 (три части с доминантными признаками и одна – с рецессивным) и по генотипу 1:2:1 (одна часть доминантных гомозигот, две части гетерозигот и одна часть рецессивных гомозигот). Р: ♀ Аа х ♂ Аа G: А а А а
F1: АА, Аа, Аа, аа Для объяснения результатов 2-го закона У. Бэтсон (1902) выдвинул положение, вошедшее в генетику под названием гипотезы «чистоты гамет»: гены в гаметах у гибридов не гибридны, а чисты. Причиной не смешивания генов у гетерозигот является нахождение их в разных хромосомах. В результате мейоза при гаметогенезе хромосомы с разными генами попадают в разные гаметы. Для дигибридного скрещивания Мендель взял гомозиготные организмы, различающиеся одновременно по двум парам альтернативных признаков. Гибриды первого поколения оказались единообразными по обоим доминантным признакам, а при анализе наследования признаков во втором поколении (F2) оказалось, что наблюдается независимое (свободное) комбинирование пар признаков. Схема скрещивания:
Этот вывод получил название третьего закона Менделя, которое формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся двумя или более парами альтернативных признаков, во втором поколении отмечается независимое комбинирование по каждой паре признаков, а так же появляются комбинации признаков не свойственные родительским особям. Скрещивание особей по двум и более альтернативным признакам называется ди- и полигибридным скрещиванием. Общая формула для дигибридного скрещивания: (3:1)2 Для полигибридного скрещивания – (3:1)n Фенотипический радикал – это та часть генотипа организма, которая определяет его фенотип. Как и всякие законы природы, являясь универсальными, законы Менделя могут проявляться лишь при определенных условиях, которые сводятся к следующему: 1. Гены разных аллельных пар должны находится в негомологичных хромосомах. 2. Полное доминирование признаков независимо от условий развития организма. 3. Равновероятное образование гамет всех типов. 4. Равновероятное сочетание гамет при оплодотворении. 5. Равная жизнеспособность зигот всех генотипов. Отклонение от ожидаемого расщепления по законам Менделя вызывают летальные гены. Так при скрещивании двух гетерозигот Аа, вместо ожидаемого расщепления 3:1, можно получить 2:1, если гомозиготы АА по какой-либо причине – нежизнеспособны. Так у человека наследуется доминантный ген брахидактилии (короткие пальцы). У гетерозигот наблюдается патология, а гомозиготы по этому гену погибают на ранних стадиях эмбриогенеза. Гетерозиготы по гену серповидно-клеточной анемии (Ss) жизнеспособны, а гомозиготы погибают (SS). Известно более 2000 наследственных болезней и аномалий развития, которые в той или иной степени подчиняются законам Менделя. Они изучаются на молекулярном, клеточном, организменном и популяционном уровнях. К их числу относится ряд тяжелых заболеваний нервной системы (шизофрения, эпилепсия), эндокринной системы (кретинизм), крови (гемофилия), нарушения обмена веществ (фенилкетонурия, алкаптонурия, альбинизм). Изучение причин этих заболеваний, их ранняя диагностика позволяет успешно разрабатывать методы предупреждения их развития. Медицинская генетика имеет надежные методы диагностики и идентификации наследственных заболеваний.
|
||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 1216; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.76.135 (0.008 с.) |