Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Биофизические основы электрокардиографии. Основные отведения ЭКГ. Клиническое значение.

Поиск

ЭКГ представляет собой запись изменения суммарного электрического потенциала, возникающего при возбуждении множества миокардиальных клеток.

Регистрация ЭКГ осуществляется с помощью электродов, накладываемых на различные участки тела.

Каждая из измеряемых разностей потенциалов называется отведением. Отведения I, II и III накладываются на конечности: I — правая рука — левая рука, II — правая рука — левая нога, III — левая рука — левая нога. С электрода на правой ноге показания не регистрируются, он используется только для заземления пациента.

Регистрируют также усиленные отведения от конечностей: aVR, aVL, aVF — однополюсные отведения, они измеряются относительно усреднённого потенциала всех трёх электродов. Заметим, что среди шести сигналов I, II, III, aVR, aVL, aVF только два являются линейно независимыми, то есть сигнал в каждом из этих отведений можно найти, зная сигналы только в каких-либо двух отведениях.

При однополюсном отведении регистрирующий электрод определяет разность потенциалов между конкретной точкой электрического поля (к которой он подведён) и гипотетическим электрическим нулём. Однополюсные грудные отведения обозначаются буквой V.

В основном регистрируют 6 грудных отведений: с V1 по V6. Отведения V7-V8-V9 незаслуженно редко используются в клинической практике, так как они дают более полную информацию о патологических процессах в миокарде задней (задне-базальной) стенки левого желудочка.

Значение ЭКГ:

- Определение частоты и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений — аритмии).

- Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда).

- Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов.

- Выявление нарушений внутрисердечной проводимости (различные блокады).

- Метод скрининга при ишемической болезни сердца, в том числе и при нагрузочных пробах.

- Даёт понятие о физическом состоянии сердца (гипертрофия левого желудочка).

- Может дать информацию о внесердечных заболеваниях, таких как тромбоэмболия лёгочной артерии.

- Позволяет удалённо диагностировать острую сердечную патологию (инфаркт миокарда, ишемия миокарда) с помощью кардиофона.

- Может применяться в исследованиях когнитивных процессов, самостоятельно или в сочетании с другими методами

 

Билет 7

Мионевральный синапс. Механизм передачи возбуждения в нем. Потенциал концевой пластинки

Нервный отросток проходя через сарколемму мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с цитолеммой мышечного волокна, образующийся из выпячиваний аксона и цитолеммы мышечного волокна, создавая глубокие "карманы". Синаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, характерно скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором (ацетилхолином).

Механизмы передачи возбуждения в синапсах на примере мионеврального синапса

Мионевральный (нервно-мышечный) синапс – образован аксоном мотонейрона и мышечной клеткой.

Нервный импульс возникает в тригерной зоне нейрона, по аксону направляется к иннервируемой мышце, достигает терминали аксона и при этом деполяризует пресинаптическую мембрану. После этого открываются натриевые и кальциевые каналы, и ионы Ca из среды, окружающей синапс, входят внутрь терминали аксона. При этом процессе броуновское движение везикул упорядочивается по направления к пресинаптической мембране. Ионы Ca стимулируют движение везикул. Достигая пресинаптическую мембрану, везикулы разрываются, и освобождается ацетилхолин (4 иона Ca высвобождают 1 квант ацетилхолина). Синаптическая щель заполнена жидкостью, которая по составу напоминает плазму крови, через нее происходит диффузия АХ с пресинаптической мембраны на постсинаптическую, но ее скорость очень мала. Кроме того, диффузия возможна еще и по фиброзным нитям, которые находятся в синаптической щели. После диффузии АХ начинает взаимодействовать с хеморецепторами (ХР) и холинэстеразой (ХЭ), которые находятся на постсинаптической мембране.

Холинорецептор выполняет рецепторную функцию, а холинэстераза выполняет ферментативную функцию. На постсинаптической мембране они расположены следующим образом:

ХР—ХЭ—ХР—ХЭ—ХР—ХЭ.

ХР + АХ = МПКП – миниатюрные потенциалы концевой пластины.

Затем происходит суммация МПКП. В результате суммации образуется ВПСП – возбуждающий постсинаптический потенциал. Постсинаптическая мембрана за счет ВПСП заряжается отрицательно, а на участке, где нет синапса (мышечного волокна), заряд положительный. Возникает разность потенциалов, образуется потенциал действия, который перемещается по проводящей системе мышечного волокна.

ХЭ + АХ = разрушение АХ до холина и уксусной кислоты.

В состоянии относительного физиологического покоя синапс находятся в фоновой биоэлектрической активности. Ее значение заключается в том, что она повышает готовность синапса к проведению нервного импульса. В состоянии покоя 1–2 пузырька в терминале аксона могут случайно подойти к пресинаптической мембране, в результате чего вступят с ней в контакт. Везикула при контакте с пресинаптической мембраной лопается, и ее содержимое в виде 1 кванта АХ поступает в синаптическую щель, попадая при этом на постсинаптическую мембрану, где будет образовываться МПКН.

В нервно-мышечном синапсе (рис. 382.1) ацетилхолин синтезируется в окончаниях двигательных нервов и накапливается в пузырьках. Когда в окончание приходит потенциал действия, ацетилхолин из 150-200 пузырьков высвобождается в синаптическую щель и связывается с холинорецепторами (холинорецепторы нервно-мышечных синапсов принадлежат к N-холинорецепторам), плотность которых особенно высока на гребнях складок постсинаптической мембраны. Каналы, сопряженные с холинорецепторами, открываются, в клетку входят катионы (в основном Na+), и происходит деполяризация постсинаптической мембраны, называемая потенциалом концевой пластинки. Поскольку этот потенциал в норме всегда сверхпороговый, он вызывает потенциал действия, распространяющийся по мышечному волокну и вызывающий сокращение. Потенциал концевой пластинки короткий, так как ацетилхолин, во-первых, быстро отсоединяется от рецепторов, во-вторых - гидролизуется АХЭ.

Потенциал концевой пластинки аналогичен ВПСП в межнейронных синапсах.

Однако амплитуда одиночного ПКП существенно выше, чем ВПСП, потому что в нервно-мышечном соединении высвобождаемый нейромедиатор попадает на более обширную поверхность, где связывается с гораздо большим количеством рецепторов и где, следовательно, открывается намного больше ионных каналов. По этой причине амплитуда одиночного ПКП обычно бывает более чем достаточна для того, чтобы в смежной с концевой пластинкой области плазматической мышечной мембраны возник местный электрический ток, инициирующий потенциал действия. Затем потенциал действия распространяется по поверхности мышечного волокна посредством такого же механизма (рис. 30.19), что и в мембране аксона. Большинство нервно- мышечных соединений расположены в срединной части мышечного волокна, откуда возникший потенциал действия распространяется к обоим его концам.

 

Зрительный анализатор. Периферический отдел зрительного анализатора - фоторецепторы, расположенные на сетчатой оболочке глаза. Нервные импульсы по зрительному нерву (проводниковый отдел) поступают в затылочную область — мозговой отдел анализатора. В нейронах затылочной области коры большого мозга возникают многообразные и различные зрительные ощущения.

Глаз состоит из глазного яблока и вспомогательного аппарата. Стенку глазного яблока образуют три оболочки: роговица, склера, или белочная, и сосудистая. Внутренняя (сосудистая) оболочка состоит из сетчатки, на которой расположены фоторецепторы (палочки и колбочки), и ее кровеносных сосудов.

В состав глаза входят рецепторный аппарат, находящийся в сетчатке, и оптическая система. Оптическая система глаза представлена передней и задней поверхностью роговой оболочки, хрусталиком и стекловидным телом. Для ясного видения предмета необходимо, чтобы лучи от всех его точек падали на сетчатку. Приспособление глаза к ясному видению разноудаленных предметов называют аккомодацией. Аккомодация осуществляется путем изменения кривизны хрусталика. Рефракция – преломление света в оптических средах глаза.

Существуют две главные аномалии преломления лучей в глазу: дальнозоркость и близорукость.

Поле зрения — угловое пространство, видимое глазом при фиксированном взгляде и неподвижной голове.

На сетчатке расположены фоторецепторы: палочки (с пигментом родопсин) и колбочки (с пигментом йодопсин). Колбочки обеспечивают дневное зрение и восприятие цвета, палочки – сумеречное, ночное зрение.

Человек обладает способностью различать большое количество цветов. Механизм цветовосприятия по общепринятой, но уже устаревшей трехкомпонентной теории заключается в том, что в зрительной системе имеются три датчика, чувствительных к трем основным цветам: красному, желтому и синему. Поэтому нормальное цветовосприятие называется трихромазией. При определенном смешении трех основных цветов возникает ощущение белого цвета. При нарушении работы одного или двух датчиков основных цветов правильного смешения цветов не наблюдается и возникают нарушения цветовосприятия.

Различают врожденную и приобретенную формы цветоаномалии. При врожденной цветоаномалии чаще наблюдается снижение чувствительности к синему цвету, а при приобретенной — к зеленому. Цветоаномалия Дальтона (дальтонизм) заключается в снижении чувствительности к оттенкам красного и зеленого цветов. Этим заболеванием страдают около 10 % мужчин и 0,5 % женщин.

Процесс восприятия цвета не ограничивается реакцией сетчатки, а существенно зависит от обработки полученных сигналов мозгом. Фотохимические процессы в сетчатке глаза. В рецепторных клетках сетчатки находятся светочувствительные пигменты (сложные белковые вещества) - хромопротеиды, которые обесцвечиваются на свету. В палочках на мембране наружных сегментов содержится родопсин, в колбочках - йодопсин и другие пигменты.

Родопсин и йодопсин состоят из ретиналя (альдегида витамина А1) и гликопротеида (опсина). Имея сходство в фотохимических процессах, они различаются тем, что максимум поглощения находится в различных областях спектра. Палочки, содержащие родопсин, имеют максимум поглощения в области 500 нм. Среди колбочек различают три типа, которые отличаются максимумами в спектрах поглощения: одни имеют максимум в синей части спектра (430 - 470 нм), другие в зеленой (500 - 530), третьи - в красной (620 - 760 нм) части, что обусловлено наличием трех типов зрительных пигментов. Красный колбочковый пигмент получил название "йодопсин". Ретиналь может находиться в различных пространственных конфигурациях (изомерных формах), но только одна из них - 11-ЦИС-изомер ретиналя выступает в качестве хромофорной группы всех известных зрительных пигментов. Источником ретиналя в организме служат каротиноиды.

Фотохимические процессы в сетчатке протекают весьма экономно. Даже при действии яркого света расщепляется только небольшая часть имеющегося в палочках родопсина (около 0,006%).

В темноте происходит ресинтез пигментов, протекающий с поглощением энергии. Восстановление йодопсина протекает в 530 раз быстрее, чем родопсина. Если в организме снижается содержание витамина А, то процессы ресинтеза родопсина ослабевают, что приводит к нарушению сумеречного зрения, так называемой куриной слепоте. При постоянном и равномерном освещении устанавливается равновесие между скоростью распада и ресинтеза пигментов. Когда количество света, падающего на сетчатку, уменьшается, это динамическое равновесие нарушается и сдвигается в сторону более высоких концентраций пигмента. Этот фотохимический феномен лежит в основе темновой адаптации.

Особое значение в фотохимических процессах имеет пигментный слой сетчатки, который образован эпителием, содержащим фусцин. Этот пигмент поглощает свет, препятствуя отражению и рассеиванию его, что обусловливает четкость зрительного восприятия. Отростки пигментных клеток окружают светочувствительные членики палочек и колбочек, принимая участие в обмене веществ фоторецепторов и в синтезе зрительных пигментов.

Вследствие фотохимических процессов в фоторецепторах глаза при действии света возникает рецепторный потенциал, который представляет собой гиперполяризацию мембраны рецептора. Это отличительная черта зрительных рецепторов, активация других рецепторов выражается в виде деполяризации их мембраны. Амплитуда зрительного рецепторного потенциала увеличивается при увеличении интенсивности светового стимула. Так, при действии красного цвета, длина волны которого составляет 620 - 760 нм, рецепторный потенциал более выражен в фоторецепторах центральной части сетчатки, а синего (430 - 470 нм) - в периферической.

Теории цветового зрения — концепции, объясняющие способность человека различать цвета, основанные на наблюдаемых фактах, предположениях, их экспериментальной проверке.

Гипотеза М. В. Ломоносова

Представление о биофизическом восприятии цвета в середине XVIII столетия впервые ввел М. В. Ломоносов. Это было его «Слово о происхождении света, новую теорию о цветах представляющее, июля 1-го дня 1756 года говоренное». Основные положения гипотезы Ломоносова:

количество основных цветов сведено к трем (красный, зелёный, жёлтый) — это то минимальное число цветов, которые в различной комбинации позволяют получить все цветовые тона (правда, не все воспринимаемые цвета);

воздействие на глаз различно по характеру, но едино по своей природе («коловратное движение эфира»);

необходимость и достаточность анализа трёх зон спектра.

Так в теориях цветового зрения появилось число «три». Гипотеза Ломоносова была первой, которая содержала все основные требования, предъявляемые к теории.

Теория Юнга — Гельмгольца

Ещё пол-столетия спустя (1853 г.) гипотезу Т. Юнга развил учёный Г. Гельмгольц, немецкий биолог и физик, который, впрочем, не упоминает известной работы Ломоносова «О происхождении света», хотя она была опубликована и кратко изложена на немецком языке.

Изучив работы Максвелла и Грассмана Гельмгольц развил теорию Юнга придал ей форму, известную теперь под названием теории цветового зрения Юнга-Гельмгольца.

Гельмгольц сделал вывод, что для получения цветов требуется 4 или более основных цветов. Позже он предположил достаточность всего трёх основных механизмов исходя из предположения о том, что они обладают спектральной чувствительностью в широком, частично перекрывающемся диапазоне. Согласно предположениям его гипотезы в сетчатке глаза человека должны быть три вида колбочек, максимум чувствительности которых приходится на красный, зелёный и синий участок спектра, то есть соответствуют трём «основным» цветам. Правда эта гипотеза не может объяснить ни механизм обработки сигналов, ни постоянство ощущения цвета (константность цвета) при изменении спектрального состава источника света. Кроме того, во-первых до сих пор так и не удалось обнаружить никаких различий между колбочковыми рецепторами сетчатки, а следовательно гипотеза была лишена анатомических доказательств. И во-вторых гипотезу трудно согласовать с существующими в действительности цветовыми ощущениями. Мы в состоянии различить по меньшей мере четыре качественно разных цветовых ощущения, а именно красного, жёлтого, зелёного и синего цветов (а с учётом белого — пять). Ни одно из этих цветоощущений, взятое в отдельности, не похоже на другое. Поэтому возникает вопрос: как могут пять психологически разных первичных цветов сочетаться с тремя физиологическими процессами? Всё эти моменты сторонники трёхкомпонентной гипотезы зрения относят к работе головного мозга.

Теория зрения ионная

(син. Лазарева теория зрения) теория, согласно которой при действии светового раздражителя на светочувствительные элементы сетчатки (палочки и колбочки) в последних происходят фотохимические процессы распада молекул светочувствительного вещества с изменением концентрации ионов и определенным сдвигом в соотношении между ними.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 935; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.123.182 (0.012 с.)