Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Биологические мембраны, их строение и функциональные особенности. Ионные каналы, их классификация и роль. Виды транспорта веществ через биологические мембраны.↑ Стр 1 из 17Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Биологические мембраны, их строение и функциональные особенности. Ионные каналы, их классификация и роль. Виды транспорта веществ через биологические мембраны. Цитоплазматическая клеточная мембрана состоит из трех слоев: • наружного - белкового; • среднего - бимолекулярного слоя липидов; • внутреннего - белкового. Толщина мембраны 7,5-10 нм. Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами, погруженными в них. От 60 до 75% липидов мембраны составляют фосфолипиды, 15-30% холестерин. Белки представлены в основном гликопротеинами. Различают интегральные белки, пронизывающие всю мембрану, и периферические, находящиеся на наружной или внутренней поверхности. Интегральные белки образуют ионные каналы. Периферическими белками являются хеморецепторы Функции мембраны: 1. обеспечивает целостность клетки как структурной единицы ткани; 2. осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью; 3. обеспечивает активный транспорт ионов и других веществ в клетку и из нее; 4. производит восприятие и переработку информации, поступающей к клетке в виде химических и электрических сигналов. Мембранный потенциал покоя. Современные представления о механизме его происхождения. Метод его регистрации. Потенциал покоя (ПП) - это разность потенциалов между наружной и внутренней поверхности мембраны в состоянии покоя, т.е. в покое мембрана поляризована. Происхождение ПП обусловлено: 1. Неравномерным распределением ионов калия и натрия между цитоплазмой и межклеточной жидкостью. В клетке - калия порядка 400 мкмоль/литр, вне клетки – 10, соответственно, натрия в клетке - 50 и 460 - вне клетки - в состоянии покоя. 2. Избирательная проницаемость клеточной мембраны в покое для натрия и калия. В покое - высокая проницаемость для калия, а для натрия в покое она практически отсутствует небольшая. В покое за счет процесса облегченной диффузии через неуправляемые медленные калиевые каналы за счет градиента концентрации - калий постоянно выходит из клетки во внеклеточное пространство, это формирует постоянный выходящий калиевый ток. Он является причиной разности потенциалов в покое и обуславливает ПП. Постоянному выходящему калиевому току противодействует работа калиевая часть калий-натриего насоса, которая обеспечивает постоянное возвратное поступление 2 молекул калия из внешней среды в клетку. В покое скорости этих двух процессов невелики. В реальных условиях в клетке возникает некое равновесное состояние между выходящим калиевым током и входящим калиевым током. Это формирует некий равновесный потенциал /ЕК/, который формирует по существу ту реальную разность потенциалов, которая существует между наружной и внутренней поверхностью клетки, если бы ее создавал один вид ионов. Его величина, описывается уравнением Нернста:
где: R - газовая постоянная, Т - абсолютная температура, F - число Фарадея, Ке - концентрация свободных ионов калия в наружном растворе, Кi - их концентрация в цитоплазме, n - валентность, ln - натуральный логарифм. По этой формуле Нернста можно подсчитать вклад калия в формирование потенциала мембраны в состоянии покоя, а так же - возбуждения. Реально равновесный потенциал для калия в покое равен минус 90 милливольт. Натрий, его равновесный потенциал в покое - плюс 60 милливольт. Хлор, для него равновесный потенциал равен - минус 70.
Кровь и ее функции, количество и состав. Гематокрит. Плазма крови и ее физико-химические свойства. Осмотическое давление крови и ее функциональная роль. Регуляция постоянства осмотического давления крови. Функции крови Функции крови многообразны. Основными функциями крови являются транспортная, защитная и регуляторная, остальные функции, приписываемые системе крови, являются лишь производными основных ее функций. Все три основные функции крови связаны между собой и неотделимы друг от друга. 1) Это, прежде всего, в обобщенном виде, функции транспорта или переноса газов и веществ, необходимых для жизнедеятельности клеток или подлежащих удалению из организма. К ним относятся: дыхательная, питательная, интегративно-регуляторная и экскреторная функции. 2) Кровь выполняет в организме и защитную функцию, благодаря связыванию и нейтрализации токсических веществ, попадающих в организм, связыванию и разрушению инородных белковых молекул и чужеродных клеток, в том числе и инфекционного происхождения. Кровь является одной из основных сред, где осуществляются механизмы специфической защиты организма от чужеродных молекул и клеток, т.е. иммунитета. 3) Кровь участвует в регуляции всех видов обмена веществ и температурного гомеостазиса (перенос тепла от более нагретых органов к менее нагретым), является источником всех жидкостей, секретов и экскретов организма. Состав и свойства крови отражают сдвиги, происходящие в других жидкостях внутренней среды и клетках, в связи с чем, исследования крови являются важнейшим методом диагностики. Гуморальная регуляция деятельности организма. В первую очередь связана с поступлением в циркулирующую кровь гормонов, биологически активных веществ и продуктов обмена. Благодаря регуляторной функции крови осуществляется сохранение постоянства внутренней среды организма, водного и солевого баланса тканей и температуры тела, контроль за интенсивностью обменных процессов, регуляция гемопоэза и других физиологических функций. Количество или объем крови Количество или объем крови у здорового человека находится в пределах 6-8 % массы тела (4 — 6 литров). Это состояние носит название нормоволемия. После избыточного приема воды объем крови может повышаться (гиперволемия), а при тяжелой физической работе в жарких цехах и избыточном потоотделении — падать (гиповолемия). Поскольку кровь состоит из клеток и плазмы, общий объем крови также складывается из объема плазмы и объема клеточных элементов. Часть объема крови, приходящаяся на клеточную часть крови, получила название гематокрит (рис. 2.3.). У здоровых мужчин гематокрит находится в пределах 44-48%, а у женщин — 41-45%. Благодаря наличию многочисленных механизмов регуляции объема крови и объема плазмы (волюморецепторные рефлексы, жажда, нервные и гуморальные механизмы изменения всасывания и выделения воды и солей, регуляция белкового состава крови, регуляция эритропоэза и др.) гематокрит является относительно жесткой гомеостатической константой и его длительное и стойкое изменение возможно лишь в условиях высокогорья, когда приспособление к низкому парциальному давлению кислорода усиливает эритропоэз и, соответственно, повышает долю объема крови, приходящуюся на клеточные элементы. Нормальные величины гематокрита и, соответственно, объема клеточных элементов называют нормоцитемией. Увеличение объема, занимаемого клетками крови, называют полицитемией, Уменьшение — олигоцитемией
Билет 5 Зрительный анализатор. Периферический отдел зрительного анализатора - фоторецепторы, расположенные на сетчатой оболочке глаза. Нервные импульсы по зрительному нерву (проводниковый отдел) поступают в затылочную область — мозговой отдел анализатора. В нейронах затылочной области коры большого мозга возникают многообразные и различные зрительные ощущения. Глаз состоит из глазного яблока и вспомогательного аппарата. Стенку глазного яблока образуют три оболочки: роговица, склера, или белочная, и сосудистая. Внутренняя (сосудистая) оболочка состоит из сетчатки, на которой расположены фоторецепторы (палочки и колбочки), и ее кровеносных сосудов. В состав глаза входят рецепторный аппарат, находящийся в сетчатке, и оптическая система. Оптическая система глаза представлена передней и задней поверхностью роговой оболочки, хрусталиком и стекловидным телом. Для ясного видения предмета необходимо, чтобы лучи от всех его точек падали на сетчатку. Приспособление глаза к ясному видению разноудаленных предметов называют аккомодацией. Аккомодация осуществляется путем изменения кривизны хрусталика. Рефракция – преломление света в оптических средах глаза. Существуют две главные аномалии преломления лучей в глазу: дальнозоркость и близорукость. Поле зрения — угловое пространство, видимое глазом при фиксированном взгляде и неподвижной голове. На сетчатке расположены фоторецепторы: палочки (с пигментом родопсин) и колбочки (с пигментом йодопсин). Колбочки обеспечивают дневное зрение и восприятие цвета, палочки – сумеречное, ночное зрение. Человек обладает способностью различать большое количество цветов. Механизм цветовосприятия по общепринятой, но уже устаревшей трехкомпонентной теории заключается в том, что в зрительной системе имеются три датчика, чувствительных к трем основным цветам: красному, желтому и синему. Поэтому нормальное цветовосприятие называется трихромазией. При определенном смешении трех основных цветов возникает ощущение белого цвета. При нарушении работы одного или двух датчиков основных цветов правильного смешения цветов не наблюдается и возникают нарушения цветовосприятия. Различают врожденную и приобретенную формы цветоаномалии. При врожденной цветоаномалии чаще наблюдается снижение чувствительности к синему цвету, а при приобретенной — к зеленому. Цветоаномалия Дальтона (дальтонизм) заключается в снижении чувствительности к оттенкам красного и зеленого цветов. Этим заболеванием страдают около 10 % мужчин и 0,5 % женщин. Процесс восприятия цвета не ограничивается реакцией сетчатки, а существенно зависит от обработки полученных сигналов мозгом. Фотохимические процессы в сетчатке глаза. В рецепторных клетках сетчатки находятся светочувствительные пигменты (сложные белковые вещества) - хромопротеиды, которые обесцвечиваются на свету. В палочках на мембране наружных сегментов содержится родопсин, в колбочках - йодопсин и другие пигменты. Родопсин и йодопсин состоят из ретиналя (альдегида витамина А1) и гликопротеида (опсина). Имея сходство в фотохимических процессах, они различаются тем, что максимум поглощения находится в различных областях спектра. Палочки, содержащие родопсин, имеют максимум поглощения в области 500 нм. Среди колбочек различают три типа, которые отличаются максимумами в спектрах поглощения: одни имеют максимум в синей части спектра (430 - 470 нм), другие в зеленой (500 - 530), третьи - в красной (620 - 760 нм) части, что обусловлено наличием трех типов зрительных пигментов. Красный колбочковый пигмент получил название "йодопсин". Ретиналь может находиться в различных пространственных конфигурациях (изомерных формах), но только одна из них - 11-ЦИС-изомер ретиналя выступает в качестве хромофорной группы всех известных зрительных пигментов. Источником ретиналя в организме служат каротиноиды. Фотохимические процессы в сетчатке протекают весьма экономно. Даже при действии яркого света расщепляется только небольшая часть имеющегося в палочках родопсина (около 0,006%). В темноте происходит ресинтез пигментов, протекающий с поглощением энергии. Восстановление йодопсина протекает в 530 раз быстрее, чем родопсина. Если в организме снижается содержание витамина А, то процессы ресинтеза родопсина ослабевают, что приводит к нарушению сумеречного зрения, так называемой куриной слепоте. При постоянном и равномерном освещении устанавливается равновесие между скоростью распада и ресинтеза пигментов. Когда количество света, падающего на сетчатку, уменьшается, это динамическое равновесие нарушается и сдвигается в сторону более высоких концентраций пигмента. Этот фотохимический феномен лежит в основе темновой адаптации. Особое значение в фотохимических процессах имеет пигментный слой сетчатки, который образован эпителием, содержащим фусцин. Этот пигмент поглощает свет, препятствуя отражению и рассеиванию его, что обусловливает четкость зрительного восприятия. Отростки пигментных клеток окружают светочувствительные членики палочек и колбочек, принимая участие в обмене веществ фоторецепторов и в синтезе зрительных пигментов. Вследствие фотохимических процессов в фоторецепторах глаза при действии света возникает рецепторный потенциал, который представляет собой гиперполяризацию мембраны рецептора. Это отличительная черта зрительных рецепторов, активация других рецепторов выражается в виде деполяризации их мембраны. Амплитуда зрительного рецепторного потенциала увеличивается при увеличении интенсивности светового стимула. Так, при действии красного цвета, длина волны которого составляет 620 - 760 нм, рецепторный потенциал более выражен в фоторецепторах центральной части сетчатки, а синего (430 - 470 нм) - в периферической. Теории цветового зрения — концепции, объясняющие способность человека различать цвета, основанные на наблюдаемых фактах, предположениях, их экспериментальной проверке. Гипотеза М. В. Ломоносова Представление о биофизическом восприятии цвета в середине XVIII столетия впервые ввел М. В. Ломоносов. Это было его «Слово о происхождении света, новую теорию о цветах представляющее, июля 1-го дня 1756 года говоренное». Основные положения гипотезы Ломоносова: количество основных цветов сведено к трем (красный, зелёный, жёлтый) — это то минимальное число цветов, которые в различной комбинации позволяют получить все цветовые тона (правда, не все воспринимаемые цвета); воздействие на глаз различно по характеру, но едино по своей природе («коловратное движение эфира»); необходимость и достаточность анализа трёх зон спектра. Так в теориях цветового зрения появилось число «три». Гипотеза Ломоносова была первой, которая содержала все основные требования, предъявляемые к теории. Теория Юнга — Гельмгольца Ещё пол-столетия спустя (1853 г.) гипотезу Т. Юнга развил учёный Г. Гельмгольц, немецкий биолог и физик, который, впрочем, не упоминает известной работы Ломоносова «О происхождении света», хотя она была опубликована и кратко изложена на немецком языке. Изучив работы Максвелла и Грассмана Гельмгольц развил теорию Юнга придал ей форму, известную теперь под названием теории цветового зрения Юнга-Гельмгольца. Гельмгольц сделал вывод, что для получения цветов требуется 4 или более основных цветов. Позже он предположил достаточность всего трёх основных механизмов исходя из предположения о том, что они обладают спектральной чувствительностью в широком, частично перекрывающемся диапазоне. Согласно предположениям его гипотезы в сетчатке глаза человека должны быть три вида колбочек, максимум чувствительности которых приходится на красный, зелёный и синий участок спектра, то есть соответствуют трём «основным» цветам. Правда эта гипотеза не может объяснить ни механизм обработки сигналов, ни постоянство ощущения цвета (константность цвета) при изменении спектрального состава источника света. Кроме того, во-первых до сих пор так и не удалось обнаружить никаких различий между колбочковыми рецепторами сетчатки, а следовательно гипотеза была лишена анатомических доказательств. И во-вторых гипотезу трудно согласовать с существующими в действительности цветовыми ощущениями. Мы в состоянии различить по меньшей мере четыре качественно разных цветовых ощущения, а именно красного, жёлтого, зелёного и синего цветов (а с учётом белого — пять). Ни одно из этих цветоощущений, взятое в отдельности, не похоже на другое. Поэтому возникает вопрос: как могут пять психологически разных первичных цветов сочетаться с тремя физиологическими процессами? Всё эти моменты сторонники трёхкомпонентной гипотезы зрения относят к работе головного мозга. Теория зрения ионная (син. Лазарева теория зрения) теория, согласно которой при действии светового раздражителя на светочувствительные элементы сетчатки (палочки и колбочки) в последних происходят фотохимические процессы распада молекул светочувствительного вещества с изменением концентрации ионов и определенным сдвигом в соотношении между ними.
62. В организме кислород и углекислый газ транспортируются кровью. Кислород, поступающий из альвеолярного воздуха в кровь, связывается с гемоглобином эритроцитов, образуя так называемый оксигемоглобин, и в таком виде доставляется к тканям. В тканевых капиллярах кислород отщепляется и переходит в ткани, где включается в окислительные процессы. Свободный гемоглобин связывает водород и превращается в так называемый восстановленный гемоглобин. Углекислый газ, образующийся в тканях, переходит в кровь и поступает в эритроциты. Затем часть углекислого газа соединяется с восстановленным гемоглобином, образуя так называемый карбогемоглобин, и в таком виде углекислый газ и доставляется к легким. Однако большая часть углекислого газа в эритроцитах при участии фермента карбоангидразы превращается в бикарбонаты, которые переходят в плазму и транспортируются к легким. В легочных капиллярах бикарбонаты при помощи специального фермента карбоангидразы распадаются и выделяется углекислый газ. Отщепляется углекислый газ и от гемоглобина. Углекислый газ переходит в альвеолярный воздух и с выдыхаемым воздухом удаляется во внешнюю среду Кислородная емкость крови - максимальное количество кислорода, обратимо связанное кровью; выражается в объемных процентах; зависит от концентрации в крови гемоглобина. Кислородная емкость крови человека ок. 18-20%. В исходной ее точке, когда РаО2 гемоглобин не содержит кислорода и SaО2 также равняется нулю. По мере повышения Ра02 гемоглобин начинает быстро насыщаться кислородом, превращаясь в оксигемоглобин: небольшого увеличения напряжения кислорода оказывается достаточно для существенного прироста содержания НЬО2. При 40 мм рт. ст. содержание НЬО2 достигает уже 75 %. Затем наклон кривой становится все более и более пологим. На этом участке кривой гемоглобин уже менее охотно присоединяет к себе кислород, и для насыщения оставшихся 25 % НЬ требуется поднять Ра02 с 40 до 150 мм рт. ст. Впрочем, в естественных условиях гемоглобин артериальной Крови никогда не насыщается кислородом полностью. Нормальная величина P50 равна 27 мм рт. ст. Ее уменьшение соответствует сдвигу кривой влево, а увеличение - сдвигу вправо.
82. Утомление – временное снижение работоспособности под влиянием длительного воздействия нагрузки. Возникает вследствие истощения внутренних ресурсов индивида и рассогласования в работе обеспечивающих деятельность систем. Утомление имеет разнообразные проявления на поведенческом (снижение производительности труда, уменьшение скорости и точности работы), физиологическом (затруднение выработки условных связей, повышение инерционности в динамике нервных процессов), психологическом (снижение чувствительности, нарушение внимания, памяти, интеллектуальных процессов, сдвиги в эмоционально-мотивационной уровнях. Сопровождается формированием комплекса субъективных переживаний усталости. Специфика проявлений утомления зависит от вида нагрузки, локализации ее воздействия, времени, необходимого для восстановления оптимального уровня работоспособности. Утомление, совокупность изменений в физическом и психическом состоянии человека и животного, развивающихся в результате деятельности и ведущих к временному снижению её эффективности. Субъективное ощущение утомления называется усталостью. Теории утомления Нервно-мышечный препарат содержит в себе три элемента: мышечное волокно, нервно-мышечный синапс и нервное волокно. Опыт показывает, что при утомлении нервно-мышечного препарата изменение функциональных свойств наступает, в первую очередь, в нервно-мышечных синапсах, во вторую очередь, — непосредственно в мышечных волокнах. Что касается нервных проводников, то они, как впервые показал Н. Е. Введенский, практически «неутомимы». Изменение функциональных свойств нервно-мышечных синапсов выражается в нарушении процесса передачи возбуждения с нервных волокон на мышечные. Существует несколько теорий развития утомления. Все они разрабатывались в условиях изолированной мышцы, на нервно-мышечном препарате. Одной из наиболее ранних теорий, пытавшихся объяснить происхождение утомления, была теория «истощения». Поскольку осуществление любой деятельности связано с превращениями энергии, предполагали, что утомление мышцы при ее работе есть следствие расхода энергетических веществ, т. е. результат истощения имеющихся в ней известных запасов этих веществ. Однако эксперименты показали, что значительное утомление изолированной мышцы наступает раньше, чем в действительности исчерпываются в ней запасы углеводов. Если же опыт проводится в условиях, когда мышца не отделена от организма и в ней поддерживается нормальное кровообращение, то содержание углеводов в утомленной мышце вообще мало отличается от исходных данных. Далее оказалось возможным восстановить работоспособность утомленной изолированной мышцы, промывая ее физиологическим раствором, который сам по себе не восполняет расхода энергетических веществ. Таким образом, теория «истощения» не дает должного объяснения утомления изолированной мышцы, тем более она неприемлема для объяснения утомления при мышечной деятельности целого организма. Сущность теории «задушения» сводится к предположению, что утомление мышцы при работе вызывается нарастающей недостаточностью притока кислорода. Однако исследования показали, что мышца может совершать свою работу вообще без всякого доступа кислорода извне, например при нахождении изолированной мышцы в камере, наполненной азотом. Сокращение мышцы без доступа кислорода извне происходит за счет анаэробных процессов расщепления аденозинтрифосфата и креатинфосфата и распада гликогена до молочной кислоты. Утомление мышцы в бескислородной среде наступает все же значительно быстрее, чем в обычных условиях. Теория «засорения» основывается на том, что мышечная работа связана с усиленным распадом энергетических веществ, что приводит к известному накоплению промежуточных продуктов этого распада. Этому обстоятельству авторы теории «засорения» придавали исключительное значение, причем роль главного «засоряющего» вещества приписывали молочной кислоте. Но в двадцатых годах тешущего столетия было впервые установлено, что мышца может сокращаться и в том случае, если углеводный обмен в ней совершенно выключен и, следовательно, молочная кислота вовсе не образуется. При этом, утомление мышцы происходит быстрее, чем при ненарушенном углеводном обмене. Несомненно, что при некоторых видах работы накопление в организме недоокисленных продуктов мышечного обмена имеет место и играет свою роль в развитии утомления, но этим не исчерпываются причины утомления. Исторический интерес представляет теория «отравления». В 1912 г. немецким ученым было заявлено об открытии им «ядов утомления», якобы образующихся в мышцах во время работы. Указывалось, что будто бы возможно вызывать утомление у животных посредством впрыскивания им некоторых доз крови, взятой у утомленного животного. Обнаружение «ядов утомления» открывало принципиальную возможность выработки противоядий против утомления с помощью хорошо известных в микробиологии методов. Однако все опыты, послужившие основой для провозглашения теории «отравления», оказались глубоко ошибочными и несостоятельными.
Билет 15 37. Условный рефлекс как форма приспособления человека к изменяющимся условиям существования. Отличия условных и безусловных рефлексов. Закономерности образования и проявления условных рефлексов. Рефлексы – это ответные реакции организма на внешние и внутренние раздражители. Рефлексы бывают безусловные и условные. Условные рефлексы – приспособительные реакции организма, являющиеся временными и строго индивидуальными. Они возникают у одного или нескольких представителей вида, которые были подвергнуты обучению (дрессировке) или воздействию среды. Выработка условных рефлексов происходит постепенно, при наличии определенных условий среды, например повторяемости условного раздражителя Безусловные рефлексы – врожденные, постоянные, наследственно передаваемые реакции, свойственные представителям данного вида организмов. К безусловным относят зрачковый, коленный, ахиллов и другие рефлексы. Некоторые безусловные рефлексы осуществляются только в определенном возрасте, например в период размножения, и при нормальном развитии нервной системы. Безусловные рефлексы являются основой выработки условных рефлексов у животных и человека. У детей по мере взросления они переходят в синтетические комплексы рефлексов, увеличивающих приспособляемость организма к условиям внешней среды. ^ Механизм образования условного рефлекса. Действующий условный раздражитель всегда вызывает слабый очаг возбуждения в соответствующей зоне мозговой коры. Присоединившийся безусловный раздражитель создает в соответствующих подкорковых ядрах и участке коры больших полушарий второй, более сильный очаг возбуждения, который отвлекает на себя импульсы первого (условного), более слабого раздражителя. В итоге между очагами возбуждения коры больших полушарий возникает временная связь, при каждом повторении (т. е. подкреплении) эта связь становится более прочной. Условный раздражитель превращается в сигнал условного рефлекса. Чтобы выработать условный рефлекс у человека, применяют секреторную, мигательную или двигательную методики с речевым подкреплением; у животных – секреторную и двигательную методики с пищевым подкреплением. Отличия условных от безусловных рефлексов. Условные рефлекс • это реакции, приобретаемые организмом в процессе индивидуального развития на основе "жизненного опыта" • являются индивидуальными: у одних представителей одного и того же вида они могут быть, а у других отсутствуют • непостоянны и в зависимости от определенных условий они могут выработаться, закрепиться или исчезнуть; это их свойство и отражено в самом их названии • могут образоваться на самые разнообразные раздражения, приложенные к различным рецептивным полям • замыкаются на уровне коры. После удаления коры больших полушарий выработанные условные рефлексы исчезают и остаются только безусловные. • осуществляются через функциональные временные связи. Понятие о гемостазе. Сосудисто-тромбоцитарный и коагуляционный гемостаз. Факторы и фазы свертывания крови. Тромбоциты и их роль в гемокоагуляции. Взаимодействие свертывающей и противосвертывающей систем крови. Фибринолиз. Свертывание крови (гемокоагуляция) является защитным механизмом организма, направленным на сохранение крови в сосудистой системе. В результате свертывания кровь из жидкого состояния переходит в желеобразный сгусток за счет превращения фибриногена (растворимого в воде белка плазмы) в фибрин (не растворимый в воде белок). Первые шаги по раскрытию механизма свертывания крови были открыты физиологом А.А. Шмидтом (1863-1864). Он обнаружил некоторые факторы свертывания, признал ферментативную природу реакций и их фазность. По современным представлениям в процессе свертывания крови принимают участие много факторов: плазменные, тромбоцитарные, сосудистого эндотелия и субэндотелия, а также форменные элементы. В свертывании крови принимают участие много факторов Они получили название – факторы свертывания крови. Содержатся в плазме крови, форменных элементах (эритроцитах, лейкоцитах, тромбоцитах) и в тканях. По международной номенклатуре они обозначаются арабскими цифрами и латинскими буквами (от слова пластинка). Важнейшими из них являются: p1 – тромбоцитарный акцелератор-глобулин. Идентичен фактору V плазмы. Относится к адсорбированным из плазмы факторам; p2 – акцелератор тромбина. Ускоряет переход фибриногена в фибрин; p3 – тромбопластический фактор, или фосфолипид. Сосредоточен в мембранной фракции. Необходим для образования протромбиназы по внутреннему пути; p4 – антигепариновый фактор; p5 – фибриноген тромбоцитов. Находится как на поверхности тромбоцитов, так и внутриклеточно. Он играет важную роль в агрегации кровяных пластинок (тромбоцитов); р6 – тромбостенин – контрактильный белок, подобный мышечному актомиозину. Обеспечивает движение тромбоцитов и образование псевдоподий. Принимает участие в осуществлении ретракции, адгезии и агрегации; p7 – антифибринолитический фактор, связывает плазмин; p8 – активатор фибринолиза, действие которого проявляется в присутствии стрептокиназы; p9 – фибринстабилизирующий фактор, напоминает по своему действию фактор ХIII плазмы (фибриназу); p10 – вазоконстрикторный фактор (серотонин). Вызывает спазм сосудов, стимулирует агрегацию тромбоцитов; p11 – АДФ – эндогенный фактор агрегации. Огромное значение в адгезии тромбоцитов играет фактор Виллебранда, содержащийся в плазме и α-гранулах пластинок, а также фибронектин. Фибронектин обнаружен, как в сосудистой стенке, так и в α-гранулах тромбоцитов. Необходимо отметить, что адгезия резко усиливается при реакции «освобождения» кровяных пластинок, когда фибронектин и фактор Виллебранда покидают тромбоциты и поступают непосредственно в плазму крови. Адгезия и агрегация тромбоцитов, как уже указывалось, зависит от соотношения тромбоксанов, выделяемых из кровяных пластинок, и простациклина, синтезируемого преимущественно эндотелием сосудистой стенки (рис. 14). Важная роль в агрегации кровяных пластинок принадлежит фактору, активирующему тромбоциты (ФАТ), который синтезируется лейкоцитами, мононуклеарами, макрофагами, тромбоцитами, сосудистой стенкой. Таким образом, тромбоциты, осуществляя адгезию, агрегацию и реакция «освобождения» активно участвуют в образовании и консолидации тромбоцитарной пробки, запускают процесс свертывания крови, чем способствуют остановке кровотечения. Плазменные факторы, или прокоагулянты находятся в плазме и обозначаются римскими цифрами. В настоящее время выделено 15 факторов: I – фибриноген; II- протромбин; III – тканевой тромбопластин; IV – ионы кальция; V – проакцелерин; VI – Ас-глобулин; VII – конвертин; VIII – антигемофильный глобулин А; IХ - антигемофильный глобулин В, или фактор Кристмасса; Х – фактор Стюарта-Прауэра; ХI – антигемофильный глобулин С, или плазменный предшественник протромбиназы; ХII – фактор Хагемана, или контакта; ХIII – фибринстабилизирующий фактор; ХIV – фактор Флетчера (прокалликреин); ХV – фактор Фитцжеральда-Фложе (кининоген).
Тромбоцитарные факторы обозначаются арабскими цифрами. В настоящее время известно 12 Одним из важных является • фактор 3 – тромбоцитарный тромбопластин – фосфолипид, находящийся в мембране кровяных пластинок и их гранул. Освобождается после разрушения тромбоцитов и используется в I фазе свертывания. • Фактор 4 – антигепариновый - связывает гепарин и ускоряет процесс гемокоагуляции; • фактор 5 – свертывающий фактор или фибриноген определяет адгезию и агрегацию тромбоцитов; • фактор 6 – тромбостенин – обеспечивает уплотнение и сокращение кровяного сгустка; • фактор 10 – сосудосуживающий (серотонин, который адсорбируется тромбоцитами из крови). Суживает поврежденные сосуды, уменьшает кровопотерю; • фактор 11 – фактор агрегации (является АДФ и обеспечивает скучивание тромбоцитов в поврежденном сосуде). В ответ на повреждение сосуда развертываются два последовательных процесса – сосудисто-тромбоцитарный гемостаз и коагуляционный гемостаз (ферментативное свертывание). Процесс свертывания крови и его значение. У здорового человека кровотечение из мелких сосудов при их ранении останавливается за 1-3 мин. Этот первичный гемостаз почти целиком обусловлен сужением сосудов и механической закупоркой их агрегатами тромбоцитов и получил название сосудисто-тромбоцитарного гемостаза, который складывается из ряда последовательных процессов: Сосудисто-тромбоцитарный механизм гемостаза Остановка кровотечения за счет сосудисто-тромбоцитарного механизма гемостаза осуществляется следующим образом. 1) Рефлекторный спазм поврежденных сосудов. Обеспечивается сосудосуживающими веществами, освобожденными из тромбоцитов (серотонин, адреналин, норадреналин). Спазм приводит к временной остановке или уменьшению кровотечения. • 2) Адгезия тромбоцитов (приклеивание к месту травмы). В месте повреждения стенка сосуда становится заряженной положительно. Отрицательно заряженные тромбоциты прилипают к обнажившимся волокнам коллагена базальной мембраны. Адгезия завершается за 3-10 сек. • 3) Обратимая агрегация (скучивание) тромбоцитов. Стимулятором является «внешняя» АДФ, выделяющаяся из поврежденного сосуда и «внутренняя» АДФ, освобождающаяся из тромбоцитов и эритроцитов. Образуется рыхлая тромбоцитарная пробка, пропускающая через себя плазму крови. Сосудисто-тромбоцитарные реакции обеспечивают гемостаз лишь в микроциркуляторных сосудах, однако тромбоцитарные тромбы не выдерживают высокого давления и вымываются. В таких сосудах гемостаз может быть достигнут путем образования фибринового тромба. Его образование осуществляется ферментативным коагуляционным механизмом, протекающим в 3 фазы. Фаза I. Формирование протромбиназы. Различают внешнюю (тканевую) и внутреннюю (кровяную) систему. Внешний путь запускается тканевым тромбопластином, который выделяется из стенок поврежденного сосуда и окружающих тканей. Во внутренней системе фосфолипиды и другие факторы поставляются самой кровью. Тканевая система (тканевая протромбиназа) образуется за 5-10 сек. тромбоцитарная 5-10 мин. протромбиназы эритроцитарная Толчком для образования тканевой протромбиназы служит повреждение стенок сосудов с выделением из них в кровь тканевого тромбопластина. В формировании тканевой протромбиназы участвуют плазменные факторы VII, V, X, и Ca++. Кровяная протромбиназа образуется медленнее. Инициатором ее образования являются обнажающиеся при повреждении сосуда волокна коллагена. Начальной реакцией является активация фактора Хагемана при контакте с данными волокнами. После этого он с помощью активированного им калликреина и кинина активирует фактор XI, образуя с ним комплекс- продукт контактной активации. К этому времени происходит разрушение эритроцитов и тромбоцитов, на фосфолипидах, которых завершается образование комплекса фактор XII + фактор XI. Эта реакция самая продолжительная, на нее уходит 5-7 мин. из 5-10 мин. всего времени свертывания. Под влиянием фактора XI активизируется фактор IX, который реагирует с фактором VIII и Ca. Образующийся кальциевый комплекс, адсорбируется на фосфолипидах, образуя последний комплекс фактор X +фактор V + Ca++ и завершение образования кровяной протромбиназы. Фаза II. Появление протромбиназы свидетельствует о начале II фазы свертывания крови – образование тромбина (2-5 сек.) Протромбиназа адсорбирует протромбин и превращает его в тромбин при участии факторов V, X и Ca++. Фаза III. Превращение фибриногена в фибрин в 3 этапа. тромбин 1). Фибриноген → фибрин-мономер Ca 2). Фибрин-мономер → полимеризация и образование фибрин - полимера (растворимый фибрин «S»). 3). Образуется окончательный нерастворимый фибрин «1» при участии фактора XIII и фибриназы тканей, тромбоцитов и эритроцитов. Завершается образование кровяно
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 489; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.99.80 (0.017 с.) |