Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Слуховой анализаторпредставляет собой совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания.Содержание книги
Поиск на нашем сайте •Функции слуховой системыхарактеризуют следующими показателями: •диапазоном слышимых частот; •абсолютной чувствительностью к звукам этого диапазона; •дифференциальной чувствительностью по частоте и интенсивности; •пространственной и временной разрешающей способностью слуха. •Диапазон частот, воспринимаемых взрослым человеком от 16-20 Гц до 16 кГц. Наибольшая чувствительность слуха на частоте от 1 до 4 кГц. •В пределах области слухового восприятия человек ощущает около 300000 различных по силе и высоте звуков. •Малая чувствительность слуха к звукам низкочастотного диапазона предохраняет человека от постоянного ощущения низкочастотных колебаний и шумов собственного тела (движения мышц, суставов, шум крови в сосудах). Орган слуха включает звукоулавливающий, звукопроводящийирецепторный аппарат.Он состоит из 3 частей (наружного, среднего, внутреннего уха)Наружное ухо:1.Ушную раковину-выполнят функцию звукоулавливателя2.Наружный слуховой проходобеспечивает проведение звуковых колебанийк барабанной перепонке и выполняет роль резонатора с собственнойчастотой колебаний 3000 Гц3.Барабанную перепонку, которая представляет собой мало податливуюи слабо растяжимую мембрану, связанную со средним ухом черезрукоятку молоточка.Среднее ухо:цепь соединенных между собой косточек:молоточек, наковальню и стремечко(связано через свое основаниес овальным окном, а через него с внутренним ухом)Содержит специальный механизм, предохраняющий внутреннееухо от повреждений при чрезмерных воздействиях. Механизм пространственной теории, предложенный Гельмгольцем, относительно простой и упорядоченный. Она допускает, что базилярная мембрана состоит из серии сегментов, каждый из которых резонирует в ответ на воздействие определенной частоты звукового сигнала. •Входящий стимул, т.о. приводит к вибрации тех участков базилярный мембраны, естественные частоты которых соответствуют компонентам стимула. •Так как резонаторы пространственно распределены вдоль всей поверхности улитки, точное место вибрирующего сегмента должно указывать на существование частной компоненты в звуке, соответствующей естественной частоте этого участка. •Нелинейные искажения, вводимые ухом (комбинация тонов в результате взаимодействия двух стимулирующих тонов), генерируется нелинейным ответом механизма среднего уха. Результаты этих искажений передаются улитке и вызывают колебания в тех местах ее, резонансные частоты которых соответствуют частоте комбинированного тона. •Таким образом, результат искажения воспринимается таким, каким он существует в оригинальном сигнале. Согласно этой теории для объяснения точной частотной регулировки внутреннего уха различные сегменты базилярной мембраны должны находиться в различной степени натянутости по аналогии с натяжением различных струн пианино. Однако Бекеши установил, что базилярная мембрана не находится под каким -либо натяжением. •Сущность и стройность пространственной теории нарушается соотношением между точностью настройки системы и задержкой ее ответа. •Для того, чтобы в ухе происходило тонкое различение частоты, разные элементы базилярной мембраны д.б. соответствующим образом настроены. Сегменты не должны отвечать на более высокие или более низкие частоты, иначе необходимые различения будут невозможны. Проблема в том, что такая узко-настроенная система должна иметь очень слабое затухание: ее ответ займет относительно много времени до полного исчезновения после остановки стимула. •Т.е. если бы тонкая настройка резонаторов наблюдалась по всей базилярной мембране, их ответы угасали бы в течение длительного времени после исчезновения стимула. Эта ситуация вызвала бы бесконечное эхо в ушах, исключая какой -либо функционально полезный слух. С другой стороны, если бы резонаторы были менее точно настроены, у них не было бы проблемы затухания, но они бы не имели и возможности поддерживать необходимое тонкое и точное частотное различные звука. •Согласно пространственной теории, искажения относятся к среднему уху. Однако результаты научных исследований показали, что ответ среднего уха поразительно линейный и что большая часть нелинейных искажений относится к улитке, что противоречит стройной пространственной теории. •Особый интерес представляет теория движущейся волны лауреата Нобелевской премии Бекеши,который установил, что базилярная мембрана не находится под каким-либо натяжением. В действительности ее эластичность в различных участках довольно одинакова, в то время как ширина мембраны увеличивается по направлению от основания к верхушке. Расширение мембраны приводит к увеличению жесткости вдоль улиткового протока, так что жесткость мембраны ≈ в 100 раз больше у стремени, чем у геликотремы. Ввиду этого градиента жесткости стимулирование улитки приводит к образованию волнообразного давления, распространяющегося от основания к верхушке. На самом деле бегущая волна распространяется вверх к геликотреме независимо от того, куда приложен стимул.
115 Тоны сердца и их происхождение. Компоненты первого и второго тона. Фо-нокардиография. Тоны сердца — звуковое проявление механической деятельности сердца, определяемое при аускультации как чередующиеся короткие (ударные) звуки, которые находятся в определенной связи с фазами систолы и диастолы сердца. Тоны сердца образуются в связи с движениями клапанов сердца, хорд, сердечной мышцы и сосудистой стенки, порождающими звуковые колебания. Выслушиваемая громкость тонов определяется амплитудой и частотой этих колебаний. Компоненты I (систолического) тона: - Клапанный – колебания створок атриовентрикулярных клапанов - Мышечный – колебания миокарда желудочков - Сосудистый – колебания начальных отрезков аорты и легочного ствола при растяжении их кровью в период изгнания. - Предсердный – колебания при сокращении предсердий Компоненты II (диастолического) тона: - Клапанный – захлопывание полулунных створок клапана аорты и легочного ствола - Сосудистый – колебания стенок аорты и легочного ствола Иногда выслушиваются III и IV тоны. III тон обусловлен колебаниями, появляющимися при быстром пассивном наполнении желудочков кровью из предсердий во вредя диастолы сердца. IV тон появляется в конце диастолы желудочков и связан с их быстрым наполнением за счет сокращений предсердий. Фонокардиография (от греч. phone – звук и кардиография), диагностический метод графической регистрации сердечных тонов и сердечных шумов. Применяется в дополнение к аускультации (выслушиванию), позволяет объективно оценить интенсивность и продолжительность тонов и шумов, их характер и происхождение, записать неслышимые при аускультации 3-й и 4-й тоны. Специальный аппарат для Фонокардиографии – фонокардиограф – состоит из микрофона, усилителя электрических колебаний, системы частотных фильтров и регистрирующего устройства. Микрофон прикладывают к разным точкам грудной клетки над областью сердца. После усиления и фильтрации электрические колебания поступают на различные каналы регистрации, что позволяет избирательно фиксировать низкие, средние и высокие частоты. Запись ФКГ производят в звукоизолированном помещении при задержке дыхания на выдохе (при необходимости – на высоте вдоха) в положении лёжа, после отдыха исследуемого в течение 5 мин. На ФКГ прямая (изоакустическая) линия отражает систолические и диастолические паузы. Нормальный 1-й тон состоит из 3 групп осцилляций: начальной (низкочастотной), обусловленной сокращением мышц желудочков; центральной (большей амплитуды), обусловленной закрытием митрального и трикуспидальнего клапанов; конечной (малой амплитуды), связанной с открытием клапанов аорты и лёгочной артерии и колебаниями стенок крупных сосудов. 2-й тон состоит из 2 групп осцилляций: первая (большая по амплитуде) обусловлена закрытием аортальных клапанов, вторая связана с закрытием клапанов лёгочной артерии. Нормальные 3-й (связан с мышечными колебаниями при быстром наполнении желудочков) и 4-й (встречается реже, обусловлен сокращением предсердий) тоны определяются преимущественно у детей и у спортсменов. Характерные изменения ФКГ (ослабление, усиление или расщепление 1-го и 2-го тонов, появление патологических 3-го и 4-го тонов, систолических и диастолических шумов) помогают распознавать пороки сердца и некоторые др. заболевания. Билет 21
|
||
|
Последнее изменение этой страницы: 2016-08-01; просмотров: 286; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.214 (0.011 с.) |