Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
К исследованию поведения функцийСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Р Г Г М У
Санкт-Петербург Одобрено Научно-методическим советом РГГМУ УДК 51 Веретенников В. Н. Учебно-методическое пособие для выполнения индивидуального задания. Применение дифференциального исчисления к исследованию поведения функций. – СПб.: Изд. РГГМУ. 2007. – 36 с.
Активизация познавательной деятельности студентов, выработка у них способности самостоятельно решать достаточно сложные проблемы может быть достигнута при такой организации учебного процесса, когда каждому студенту выдаются индивидуальные домашние задания (ИДЗ) с обязательным последующим контролем их выполнения и выставлением оценок. Предлагаемое пособие адресовано преподавателям и студентам и предназначено для проведения практических занятий и самостоятельных (контрольных) работ в аудитории и выдачи ИДЗ.
© Веретенников В. Н. © Российский государственный гидрометеорологический университет (РГГМУ), 2007.
ПРЕДИСЛОВИЕ
"Математика" является не только мощным средством решения прикладных гидрометеорологических задач, но также и элементом общей культуры. Именно в рамках математического образования студент получает навыки творческого подхода к решению интеллектуальных проблем, точному пониманию средств возможностей решения проблем, знакомится с современными информационными технологиями. Целью математического образования является: 1. Воспитание достаточно высокой математической культуры. 2. Привитие навыков современных видов математического мышления. 3. Привитие навыков использования математических методов и основ математического моделирования в практической деятельности. Воспитание у студентов математической культуры включает в себя ясное понимание необходимости математической составляющей в общей подготовке студента. Он должен выработать представление о роли и месте математики в современной цивилизации и в мировой культуре, уметь логически мыслить, оперировать с абстрактными объектами и быть корректным в употреблении математических понятий и символов для выражения количественных и качественных отношений. В пособии приведены основные теоретические сведения, отражающие базисные понятия по разделу "Применение дифференциального исчисления к исследованию поведения функций"; базисные методы решения основных задач; приведен перечень знаний, умений и навыков, которыми должен владеть студент; указана используемая литература.
ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ К ИССЛЕДОВАНИЮ ПОВЕДЕНИЯ ФУНКЦИЙ Одной из важнейших прикладных задач дифференциального исчисления является разработка общих приемов исследования поведения функций. Основные теоретические сведения ВОЗРАСТАНИЕ И УБЫВАНИЕ ФУНКЦИЙ Определение 1. Функция называется возрастающей в некотором интервале, если для любых двух чисел из этого интервала из неравенства следует неравенство . Определение 2. Функция называется убывающей в некотором интервале, если для любых двух чисел из этого интервала из неравенства следует неравенство . Промежутки, на которых функция возрастает (убывает), называются промежутками монотонности. ПРИЗНАКИ ВОЗРАСТАНИЯ И УБЫВАНИЯ ФУНКЦИЙ Следующая теорема выражает важный для практических целей признак возрастания и убывания функции и указывает правило для определения интервалов, в которых функция возрастает и убывает (иначе, интервалов монотонности функций). При решении задач, в которых требуется определить интервалы возрастания и убывания функции, следует, прежде всего, определить область существования этой функции. Теорема 1 (достаточный признак возрастания и убывания функции на интервале). Если во всех точках некоторого интервала первая производная , то функция в этом интервале возрастает. Если же во всех точках некоторого интервала первая производная , то функция в этом интервале убывает.
|
||||||||||
Последнее изменение этой страницы: 2016-07-14; просмотров: 433; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.35.234 (0.007 с.) |