Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие дифференциала функции. Свойства. Применение дифференциала в приближенных вычислениях.
Понятие дифференциала функции. Свойства. Применение дифференциала в приближенных вычислениях. Понятие дифференциала функции Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную. Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/Dх=ƒ'(х)+α, где α→0 при ∆х→0, или ∆у=ƒ'(х)•∆х+α•∆х. Таким образом, приращение функции ∆у представляет собой сумму двух слагаемых ƒ'(х)•∆х и а•∆х, являющихся бесконечно малыми при ∆x→0. При этом первое слагаемое есть бесконечно малая функция одного порядка с ∆х, так как а второе слагаемое есть бесконечно малая функция более высокого порядка, чем ∆х: Поэтому первое слагаемое ƒ'(х)· ∆х называют главной частью приращения функции ∆у. Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)): dy=ƒ'(х)•∆х. (1) Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х. Так как у'=х'=1, то, согласно формуле (1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х. Поэтому формулу (1) можно записать так: dy=ƒ'(х)dх, (2) иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной. Из формулы (2) следует равенство dy/dx=ƒ'(х). Теперь обозначение производной dy/dx можно рассматривать как отношение дифференциалов dy и dх. Дифференциал обладает следующими основными свойствами. 1. d(с)=0. 2. d(u+w-v)= du+dw-dv. 3. d(uv)=du·v+u·dv. d(сu)=сd(u). 4. . 5. y=f(z), , , . Форма дифференциала инвариантна (неизменна): он всегда равен произведению производной функции на дифференциал аргумента, независимо от того, простым или сложным является аргумент. Применение дифференциала к приближенным вычислениям Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ'(х)•∆х+α•∆х, где α→0 при ∆х→0, или ∆у=dy+α•∆х. Отбрасывая бесконечно малую α•∆х более высокого порядка, чем ∆х, получаем приближенное равенство ∆у≈dy, (3) причем это равенство тем точнее, чем меньше ∆х. Это равенство позволяет с большой точностью вычислить приближенно приращение любой дифференцируемой функции. Дифференциал обычно находится значительно проще, чем приращение функции, поэтому формула (3) широко применяется в вычислительной практике.
Первообразная функция и неопределенный интеграл. ПОНЯТИЕ ПЕРВООБРАЗНОЙ ФУНКЦИИ И НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА Функция F (х) называется первообразной функцией для данной функции f (х) (или, короче, первообразной данной функции f (х)) на данном промежутке, если на этом промежутке Теорема 1. Если и — две первообразные для функции f (х) в некотором промежутке, то разность между ними в этом промежутке равна постоянному числу. Свойства неопределенного интеграла. Интегралы от основных элементарных функций. Интегрирование по частям Интегрирование по частям — применение следующей формулы для интегрирования: Или: В частности, с помощью n -кратного применения этой формулы находится интеграл где — многочлен -й степени.
Формула Ньютона – Лейбница. Пусть функция f (x) непрерывна на замкнутом интервале [ a, b ]. Если F (x) - первообразная функции f (x) на[ a, b ], то
Понятие дифференциала функции. Свойства. Применение дифференциала в приближенных вычислениях.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 522; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.234.50 (0.009 с.) |