Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие дифференциала функции. Свойства. Применение дифференциала в приближенных вычислениях.Понятие дифференциала функции. Свойства. Применение дифференциала в приближенных вычислениях. Понятие дифференциала функции Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную.
Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/Dх=ƒ'(х)+α, где α→0 при ∆х→0, или ∆у=ƒ'(х)•∆х+α•∆х. Таким образом, приращение функции ∆у представляет собой сумму двух слагаемых ƒ'(х)•∆х и а•∆х, являющихся бесконечно малыми при ∆x→0. При этом первое слагаемое есть бесконечно малая функция одного порядка с ∆х, так как
Поэтому первое слагаемое ƒ'(х)· ∆х называют главной частью приращения функции ∆у. Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)): dy=ƒ'(х)•∆х. (1) Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х. Так как у'=х'=1, то, согласно формуле (1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х. Поэтому формулу (1) можно записать так: dy=ƒ'(х)dх, (2) иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной. Из формулы (2) следует равенство dy/dx=ƒ'(х). Теперь обозначение производной dy/dx можно рассматривать как отношение дифференциалов dy и dх. Дифференциал обладает следующими основными свойствами. 1. d(с)=0. 2. d(u+w-v)= du+dw-dv. 3. d(uv)=du·v+u·dv. d(сu)=сd(u). 4. 5. y=f(z), Форма дифференциала инвариантна (неизменна): он всегда равен произведению производной функции на дифференциал аргумента, независимо от того, простым или сложным является аргумент. Применение дифференциала к приближенным вычислениям Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ'(х)•∆х+α•∆х, где α→0 при ∆х→0, или ∆у=dy+α•∆х. Отбрасывая бесконечно малую α•∆х более высокого порядка, чем ∆х, получаем приближенное равенство ∆у≈dy, (3) причем это равенство тем точнее, чем меньше ∆х. Это равенство позволяет с большой точностью вычислить приближенно приращение любой дифференцируемой функции. Дифференциал обычно находится значительно проще, чем приращение функции, поэтому формула (3) широко применяется в вычислительной практике.
Первообразная функция и неопределенный интеграл. ПОНЯТИЕ ПЕРВООБРАЗНОЙ ФУНКЦИИ И НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА Функция F (х) называется первообразной функцией для данной функции f (х) (или, короче, первообразной данной функции f (х)) на данном промежутке, если на этом промежутке Теорема 1. Если Свойства неопределенного интеграла. Интегралы от основных элементарных функций. Интегрирование по частям Интегрирование по частям — применение следующей формулы для интегрирования:
Или:
В частности, с помощью n -кратного применения этой формулы находится интеграл
где
Формула Ньютона – Лейбница. Пусть функция f (x) непрерывна на замкнутом интервале [ a, b ]. Если F (x) - первообразная функции f (x) на[ a, b ], то
Понятие дифференциала функции. Свойства. Применение дифференциала в приближенных вычислениях.
|
||
|
Последнее изменение этой страницы: 2016-04-07; просмотров: 666; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.108 (0.008 с.) |