ЗНАЕТЕ ЛИ ВЫ?

Занятие 4. Методы экстраполяции. Аппроксимация динамического ряда аналитическими функциями.



Аппроксимация динамического ряда аналитическими функциями – расчет параметров (а, b, с) для конкретной функциональной зависимости. Параметры модели тренда должны минимизировать отклонения расчетных значений от соответствующих значений исходного ряда. Выбор модели осуществляется с помощью специально разработанных программ. Есть программы, предусматривающие возможность моделирования экономических рядов по 16-ти функциям: линейной (y = а + b * х), гиперболической различных типов (у = а + b / х), экспоненциальной, степенной, логарифмической и др. Каждая из них может иметь свою, специфическую область применения при прогнозировании экономических явлений.

Так, линейная функция применяется для описания процессов, равномерно развивающихся во времени. Параметр b (коэффициент регрессии) показывает скорость изменения прогнозируемого у при изменении х. Гиперболы хорошо описывают процессы, характеризующиеся насыщением, когда существует фактор, сдерживающий рост прогнозируемого показателя.

Модель выбирается, во-первых, визуально, на основе сопоставления вида кривой, ее специфических свойств и качественной характеристики тенденции экономического явления; во-вторых, исходя из значения критерия. В качестве критерия чаще всего используется сумма квадратов отклонений – из совокупности функций выбирается та, которой соответствует ее минимальное значение.

Для окончательного выбора вида функции нужно исследовать логику протекания процесса в целом, в том числе гипотезы его протекания в перспективе. Игнорирование этого этапа приводит к ошибочным, а иногда к парадоксальным выводам. Вы должны ответить на следующие вопросы:

· является ли исследуемый показатель величиной монотонно возрастающей, монотонно убывающей, стабильной или периодической;

· ограничен ли сверху или снизу исследуемый показатель каким-либо пределом;

· имеет ли функция, определяющая процесс, точку перегиба;

· обладает ли функция, описывающая процесс, свойством симметричности;

· имеет ли процесс четкое ограничение развития во времени?

Если в ходе предварительной обработки информации и содержательного анализа выявлено отсутствие инерционности в развитии объекта, то использование прогнозной экстраполяции недопустимо!

Выбор функции, применяемой для описания явления, зависит от типа динамики процесса. Далее будут приведены основные элементарные функции прогнозной экстраполяции.

Прогноз предполагает продление тенденции прошлого, выражаемой выбранной функцией, в будущее, т.е. экстраполяцию динамического ряда. Программным путем на ЭВМ определяется значение прогнозируемого показателя. Для этого в формулу, описывающую процесс, подставляется величина периода, на который необходимо получить прогноз.

В связи с тем, что этот метод исходит из инерционности экономических явлений и предпосылок, что общие условия, определяющие развитие в прошлом, не претерпят существенных изменений в будущем, его целесообразно использовать при разработке краткосрочных прогнозов обязательно в сочетании с методами экспертных оценок. Причем динамический ряд может строиться на основании данных не по годам, а по месяцам, кварталам.

При аппроксимации динамического ряда известными аналитическими функциями предполагается, что для прогнозирования будет использована функция, у которой форма кривой ближе всего подходит к графическому тренду. Самый простой способ выбора функции – визуальный, на основе графического изображения динамического ряда. Чаще всего для аппроксимации используются:

- линейная функция ;

- парабола ;

- гипербола ;

- логарифмическая функция ;

- экспоненциальная функция ;

- степенная функция .

- показательная .

Каждая функция имеет свою сферу применения. Например, линейная функция используется для описания равномерно развивающихся процессов, а гипербола хорошо описывает процессы, для которых характерно насыщение рынка.

 

Пример решения задачи среднесрочного прогнозирования на основе двухпараметрических кривых в среде Microsoft Excel

 

Снова рассмотрим некоторый условный показатель:

Период
Показатель, млн. р. 1139,5 1138,3 1155,5 1152,7 1177,1 1179,4 1193,8

 

Выберем по внешнему виду графика аппроксимирующую кривую, для чего используем сглаженный ряд (см. выше):

Линейная функция:

Логарифмическая функция:

Парабола:

Степенная функция:

Экспонента:

По графикам видно, что линейная функция, полином второго порядка и экспонента одинаково близки с сглаженному ряду, поэтому выбираем линейную функцию:

Прогноз на следующие 2 периода можно рассчитать, используя уравнение на диаграмме:

 

Задача 1. Осуществить аппроксимацию по данным временного ряда индекса стоимости жизни:

 

Задача 2. Осуществить аппроксимацию по данным временного ряда спроса на условный товар в магазине:

 

Задача 3. Осуществить аппроксимацию по данным временного ряда объема продаж меховых шуб из песца в магазине "Меха":





Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.239.51.78 (0.005 с.)