Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Запутанность квантовых битовСодержание книги
Поиск на нашем сайте
Мы только что узнали, как «изготовить» два инфракрасных фотона, которые запутаны по энергии и по возрасту. Измеряя энергию или возраст этих двух фотонов, мы получаем идеально коррелирующие результаты. С помощью джойстиков Алиса и Боб выбирают, какое измерение выполняет прибор – энергии или возраста фотонов, но и этого пока недостаточно, чтобы начать играть. Причина в том, что в игре Белла результаты должны быть представлены в двоичном виде, а измерение энергии и возраста дает числовые результаты из широкого диапазона возможных значений (теоретически их бесконечно много). Поэтому нам придется, если можно так сказать, дискретизировать запутанность. Начнем с того, что заменим лазер, который непрерывно светит на нелинейный кристалл, другим лазером, который выдает короткие импульсы света. Затем, используя полупрозрачные зеркала (физики называют такое устройство светоделителем), мы можем разделить этот импульс на два, задержать один из двух полуимпульсов и вновь свести их, как показано на рис. 6.2. Таким образом, на кристалл направляется серия из двух полуимпульсов. Это все тот же нелинейный кристалл, который используется для производства пар фотонов. В какой же момент будут образовываться эти фотонные пары? Каждый зеленый фотон, испущенный лазером, разделяется надвое, одна половина искусственно задерживается, и результат отправляется в кристалл. Таким образом, в нелинейном кристалле каждый зеленый фотон может быть превращен в два инфракрасных фотона в два разных момента времени. Если мы детектируем один инфракрасный фотон, то мы можем обнаружить его в два разных момента времени – вовремя или с задержкой. Тогда другой инфракрасный фотон обязательно будет обнаружен в это же время, другими словами, у него будет тот же самый возраст. Вот так мы получаем двоичный результат для измерения возраста инфракрасных фотонов. (Важно понимать, что это не означает, что зеленый фотон иногда приходит вовремя, а иногда запаздывает. Он всегда приходит и вовремя, и с опозданием, в суперпозиции этих состояний, говоря физическим языком. Его облако потенциальных возрастов имеет два пика, один соответствует варианту «вовремя», а другой – «с задержкой». Каждая пара инфракрасных фотонов, порожденных зеленым фотоном, также одновременно находится в двух состояниях – «вовремя» и «с задержкой», но эти два фотона всегда имеют один и тот же возраст.) Для второго необходимого для игры измерения – измерения энергии фотона – потребуется интерферометр. Здесь важно понять, что мы можем дискретизировать и измерение энергии[45], а значит, играть и выиграть в игру Белла.
Эксперимент Берне – Белльвю
Мы провели вышеописанный эксперимент в Женеве в 1997 г. Это был первый случай, когда игру Белла устроили за пределами одной физической лаборатории. У меня был солидный опыт в области телекоммуникации, и в частности в оптоволоконных технологиях – в начале 1980-х я поучаствовал в их внедрении в Швейцарии. Главная техническая трудность заключалась в последовательном обнаружении фотонов с длиной волны, совместимой с характеристиками оптоволокна. В то время таких детекторов просто не существовало. Во время первых прогонов эксперимента нам приходилось погружать некоторые диоды в жидкий азот, чтобы они сохраняли низкую температуру. И совсем другого характера проблемой был доступ к оптоволоконной сети национального оператора Swisscom. К счастью, благодаря моей прежней работе в этой области у меня сохранились прекрасные связи.
Кристалл, являвшийся источником запутанности, и все сопутствующее оборудование мы привезли и смонтировали в телекоммуникационном центре возле железнодорожной станции в Корнавене. Отсюда один непрерывный оптоволоконный кабель шел в деревню Белльвю к северу от Женевы, а второй – в деревню Берне к югу от Женевы, более чем в 10 км по прямой от Белльвю. В каждой деревне в их маленьких телекоммуникационных центрах мы сумели установить наши интерферометры и фотонные детекторы (вместе с жидким азотом!). Попасть в эти помещения было непросто, даже имея ключ. В течение одной минуты после открытия двери необходимо было позвонить на пульт охранной сигнализации по специальному интерфону и сказать пароль. Потом нужно было спуститься на четыре этажа вниз в подвал, куда сходились все оптоволоконные кабели из окружающих районов. Учитывая, что воспользоваться там мобильным телефоном было невозможно, предлагаю читателю подумать над этой логистической задачей! Итак, эксперимент начался. Мы были совершенно уверены, что выиграем в игру Белла, но нас ждало три сюрприза. Первый состоял в том, что, когда солнце поднималось над горизонтом, кабель, уходящий на юг, становился значительно длиннее, чем второй, хотя они оставались почти одинаковой длины. Была такая версия, что этот кабель проходил через мост, а значит, был зарыт на меньшей глубине и подвергался большим вариациям температуры. Так возникла сложная проблема синхронизации, но через несколько бессонных ночей мы нашли решение. Второй сюрприз был приятным. Миссис Мэри Белл, вдова Джона Белла, приехала посмотреть на наши старания. Наконец, уже после публикации результатов эксперимента[46]нам был преподнесен третий сюрприз в виде разворота в New York Times, визита группы BBC для съемки происходящего и признание его одним из экспериментальных прорывов 1990-х по версии Американского физического общества.
Глава 7 Практические применения
Жизнеспособная физическая концепция всегда приводит к изменениям в повседневной жизни. Уравнения электродинамики, открытые Максвеллом в XIX веке, легли в основу развития электроники в XX веке. Точно так же мы можем ожидать, что квантовая физика, открытая в XX веке, станет двигателем технологического развития в XXI веке. Благодаря квантовой физике мы уже получили лазеры, которые используются в считывателях DVD-дисков, к примеру, или полупроводники, столь важные для наших компьютеров. Но эти первые приложения основываются лишь на свойствах ансамблей квантовых частиц, то есть ансамблей фотонов в лазерах и электронов в полупроводниках. А что можно сказать об использовании нелокальных квантовых корреляций? В них участвуют пары квантовых частиц – одна для Алисы, другая для Боба. Эти частицы нужно обрабатывать по одной, а это сложная задача. Но физики – это не те люди, которые будут стоять на месте и ждать. В этой главе я расскажу о двух областях использования нелокальных корреляций, которые уже нашли коммерческое применение, но я почти уверен, что совсем скоро нас ждут новые чудесные приложения.
|
||||
Последнее изменение этой страницы: 2016-06-06; просмотров: 153; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.207.115 (0.007 с.) |