Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Информация - от латинского informatio – сведения, разъяснения, изложение.

Поиск

Информация - от латинского informatio – сведения, разъяснения, изложение.

В зависимости от области знания существуют различные подходы к определению информации. В неживой природе понятие информации связывают с понятием отражения, отображения внешнего мира. В биологических системах под информацией понимают сведения, данные, сигналы, которые наблюдаются в жизни животных и растений. Под информацией в технике принято понимать любую последовательность символов, знаков, сигналов, не учитывая их смысл. С точки зрения индивидуального человека информация – это то, что поступает в наш мозг из много их источников и во многих формах и, взаимодействуя там, образует наши знания; то, что радует нас, волнует, печалит, заставляет переживать и др. – это наши ощущения; сведения, данные, понятия, которые накапливаются в нашем сознании, которые нужны для ориентирования в окружающем мире и принятия решений о своих дальнейших действиях.

· Информация объективна, если она не зависит от чьего-либо мнения, суждения.

· Информация достоверна, если она отражает истинное положение дел.

· Информация полна, если ее достаточно для понимания и принятия решения.

· Информация актуальна (своевременна), если она важна, существенна для настоящего времени.

· Полезность информации оценивается по тем задачам, которые мы можем решить с ее помощью.

Информация понятна, если она выражена на языке, доступном для получателя.

Единицы измерения информации служат для измерения объёма информации — величины, исчисляемой логарифмически. Это означает, что когда несколько объектов рассматриваются как один, количество возможных состояний перемножается, а количество информации — складывается. Не важно, идёт речь о случайных величинах в математике, регистрах цифровой памяти в технике или в квантовых системах в физике.

Объёмы информации можно представлять как логарифм количества состояний.

Наименьшее целое число, логарифм которого положителен — 2. Соответствующая ему единица — бит — является основой исчисления информации в цифровой технике.

 

Истоки зарождения вычислительной техники. Этапы развития ВТ. Поколения ЭВМ.

· 3000 лет до н. э. — в Древнем Вавилоне были изобретены первые счёты — абак.

· 500 лет до н. э. — в Китае появился более «современный» вариант абака с косточками на соломинках — суаньпань.

· XVI век — в России появились счёты, в которых было 10 деревянных шариков на проволоке.

· 87 год до н. э. — в Греции был изготовлен «антикитерский механизм» — механическое устройство на базе зубчатых передач, представляющее собой специализированный астрономический вычислитель.

· Логарифмическая линейка (Джон Непер 1614 год «описание удивительных таблиц логарифмов»)

· 1492 год — Леонардо да Винчи в одном из своих дневников приводит эскиз 13-разрядного суммирующего устройства с десятизубцовыми кольцами. Хотя работающее устройство на базе этих чертежей было построено только в XX веке, всё же реальность проекта Леонардо да Винчи подтвердилась.

· 1623 год — Вильгельм Шиккард, профессор университета Тюбингена, разрабатывает устройство на основе зубчатых колес («считающие часы») для сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно не известно, но в 1960 году оно было воссоздано и проявило себя вполне работоспособным.

· 1630 год — Ричард Деламейн создаёт круговую логарифмическую линейку.

· 1642 год — Блез Паскаль представляет «Паскалину» — первое реально осуществлённое и получившее известность механическое цифровое вычислительное устройство. Прототип устройства суммировал и вычитал пятиразрядные десятичные числа. Паскаль изготовил более десяти таких вычислителей, причём последние модели оперировали числами с восемью десятичными разрядами.

· 1673 год — известный немецкий философ и математик Готфрид Вильгель Лейбниц построил механический калькулятор, который при помощи двоичной системы счисления выполнял умножение, деление, сложение и вычитание.

· 1820 год — первый промышленный выпуск арифмометров. Первенство принадлежит французу Тома де Кальмару.

· Ада Лавлез создает описание вычислительной машины, проект которой был разработан Чарльзом Бэббиджем в 1822 году(но не смог построить). Тк же она составила первую в мире программу (для этой машины). Ввела в употребление термины «цикл» и «рабочая ячейка».

· 1884—1887 годы — Холлерит разработал электрическую табулирующую систему, которая использовалась в переписях населения США 1890 и 1900 годов и России в 1897 году.

· 1938 год — немецкий инженер Конрад Цузе построил свою первую машину, названную Z1. Это полностью механическая программируемая цифровая машина. Модель была пробной и в практической работе не использовалась. Её восстановленная версия хранится в Немецком техническом музее в Берлине. В том же году Цузе приступил к созданию машины Z2.

· 1941 год — Конрад Цузе создаёт первую вычислительную машину Z3, обладающую всеми свойствами современного компьютера.

· В начале 1943 года успешные испытания прошла первая американская вычислительная машина Марк I, предназначенная для выполнения сложных баллистических расчётов американского ВМФ.

· В конце 1943 года заработала английская вычислительная машина специального назначения Колосс. Машина работала над расшифровкой секретных кодов фашистской Германии.

· В 1944 году Конрад Цузе разработал ещё более быстрый компьютер Z4, а также первый язык программирования высокого уровня Планкалкюль.

· 1946 год стал годом создания первой универсальной электронной цифровой вычислительной машины ЭНИАК.

· В Советском Союзе первая электронная вычислительная машина была создана в Киеве группой Лебедева в 1950 году.

· В 1958 году Н. П. Брусенцов с группой единомышленников построили первую троичную ЭВМ с позиционной симметричной троичной системой счисления «Сетунь».

Поколения ЭВМ

Поколения компьютеров Поколения компьютеров. Ни одно техническое устройство не совершенствовалось так быстро, как компьютер. Каждые 10-12 лет происходил резкий прыжок в их конструкциях, способах производства. Новые модели быстро вытесняли стариков. Возможности и сферы их применения постоянно расширялись, а в отличие от других устройств, например, телевизоров или автомобилей, себестоимость и цена постоянно снижались.

Выделяют пять поколений компьютеров. Каждое поколение характеризуется элементной базой - видом элементов, из которых построена оперативная память и процессор, и развитием программного обеспечения.

Первое поколение (50 года). Элементной базой компьютеров первого поколения были вакуумные электронные лампы, которые сегодня еще можно увидеть в старых телевизорах и радиоприемниках. Тысячи ламп были в металлических шкафах, которые занимали много места. Весила такая машина десятки тонн. Для ее работы требовалась электростанция. Для охлаждения машины использовали мощные вентиляторы. Программирование выполняли в кодах машины, доступ к которой имели только специалисты-профессионалы.

Быстродействие составляло несколько тысяч операций за секунду. Эти машины имели небольшую оперативную память.

Второе поколение (60 года). Элементной базой компьютеров второго поколения были транзисторы, которые заменили электронные лампы. Транзисторы значительно меньше ламп и потребляют значительно меньше энергии. Поэтому размеры компьютера уменьшились. Возможности же увеличились, поскольку появились языка программирования высокого уровня и программное обеспечение. Программирование стало доступным и для не профессионалов в области компьютеров. В программном обеспечении были заранее разработанные программы решения наиболее типичных задач. Быстродействие машин достигла сотен тысяч операций за секунду. Значительно увеличилась оперативная память. Наиболее распространенными были такие марки машин: "Элиот" (Англия), "Сименс" (ФРГ), "Стретч", "CDC" (США), "Раздаи-2", серия "Минск", "Урал", "Найри", "Мир", "Бзсм-б" (в нашей стране).

Третье поколение (70 года). Элементная база компьютеров третьего поколения - интегрированные устройства (интегральные схемы, чипы). Интегрированное устройство - это небольшая пластинка из чистого кремния, на которой являются миниатюрные электронные элементы: транзисторы, резисторы и т.п..

Таких элементов на квадратном сантиметре сначала было несколько тысяч. Значительно увеличились быстродействие (до нескольких миллионов операций за секунду) и объем оперативной намятые. Развилось программное обеспечение. Удобство в пользовании открыло широкий доступ к компьютерам. Такая машина может одновременно решать несколько задач, выполняя несколько программ.

Пользователям нет потребности работать непосредственно с внутренностями компьютера не отходя ни на шаг, так- как есть пульт управления. Для работы им предоставлены терминалы (клавиатура, дисплей и устройства введения - выведения), которые могут быть отдалены от компьютера на немалые расстояния. Для сохранения информации используют магнитные ленты и магнитные диски. Магнитные носители информации стали вытеснять перфокарты и перфоленты. Начался переход к информатике. Машины третьего поколения - серия "ІВМ-360", "ІВМ-370" в США, серия ЭС в нашей стране - аналог серии "ІBM". Разработка проекта машины третьего поколения стоила фирме ІBM в 60-х годах 5 миллиардов долларов.

Четвертое поколение (80 года). Элементной базой компьютеров четвертого поколения являются крупномасштабные интегрированные устройства. Прогресс, в физике, полупроводников дал возможность разместить большое количество элементов на маленьком кристалле кремния (десятки тысяч на квадратном сантиметре). Кроме того, на одном кристалле кремния стало возможно разместить устройство, которое воссоздает работу процессора. Такие кристаллические процессоры называются микропроцессорами. Это обусловило появление микрокалькуляторов, персональных компьютеров, которые можно размещать на обычном рабочем столе, а также мощных много процессорных компьютеров. Увеличились быстродействие (к миллиарду операций за секунду), емкость оперативной памяти, удобство в пользовании. Массовое производство и сбыт обеспечили резкое снижение цен на компьютерную технику.

Пользователь снова сел за пульт управления, но уже персонального компьютера. Мощнейшие машины четвертого поколения: "Эльбрус" в нашей стране, американские машины серии "Крей" и прочие.

На уровне четвертого поколения состоялось деление машин на большие вычислительные машины и персональные компьютеры.

Сегодня уже есть несколько поколений персональных компьютеров.

Пятое поколение (90 года). Элементной базой компьютеров пятого поколения стали очень большие масштабные интегрированные устройства, которые содержат сотни тысяч элементов на квадратном сантиметре.

В 1980 г. японское правительство и некоторые фирмы объявили десятилетнюю программу создания компьютерной системы пятого поколения, которое должна была базироваться на использовании искусственного интеллекта, экспертных систем и естественного языка общения. Эту программу назвали "японским вызовом", поскольку авангардная роль в области компьютерной техники сегодня належит США.

Ну а сейчас, можно выделить, ещё пять поколений персонального PENTIUMа плюс новая оперативка, беспроводная связь, управление голосом, передача запаха, 200 гигабайт в кармане и 20 на одном диске, размер калькулятора…

Поколение первое.
Компьютеры на электронных лампах.

Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году. Вскоре Ли де Форрест изобретает вакуумный триод - лампу с тремя электродами, затем появляется газонаполненная электронная лампа - тиратрон, пятиэлектродная лампа - пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер, изобретенный М. А. Бонч-Бруевичем (1918) и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры. Подробнее об электронной лампе здесь.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

 

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штеккера с нужным гнездом.

Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Поколение второе.
Транзисторные компьютеры.

1 июля 1948 года на одной из страниц "Нью-Йорк Таймс", посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма "Белл телефон лабораториз" разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Брайттен создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия. Подробнее о транзисторе здесь.

Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник (!!) и стоимостью всего 20 тыс. долларов (!!).

Созданию транзистора предшествовала упорная, почти 10-летняя работа, которую еще в 1938 году начал физик теоретик Уильям Шокли. Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности.

И все-таки самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а магнитную ленту, впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду! Примерами транзисторных компьютеров могут послужить "Стретч" (Англия), "Атлас" (США). В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня (например "БЭСМ-6").

Поколение третье.
Интегральные схемы.

Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники - рождение машин третьего поколения. Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм2. Подробнее об интегральных схемах здесь. Первые и нтегральные с хемы (ИС) появились в 1964 году. Сначала они использовались только в космической и военной технике. Сейчас же их можно обнаружить где угодно, включая автомобили и бытовые приборы. Что же качается компьютеров, то без интегральных схем они просто немыслимы!

Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Другими словами, один крошечный кристалл обладает такими же вычислительными возможностями, как и 30-тонный Эниак! Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.

 

Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Поколение четвертое.
Большие интегральные схемы.

Вы уже знаете, что электромеханические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние - интегральным схемам. Могло создастся впечатление, что технические возможности ЭВМ исчерпаны. В самом деле, что же можно еще придумать?

Чтобы получить ответ на этот вопрос, давайте вернемся к началу 70-х годов. Именно в это время была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Оказалось, можно! Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем. Так, уже в 1980 году, центральный процессор небольшого компьютера оказался возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см2). Началась эпоха микрокомпьютеров.

 

Каково же быстродействие современной микроЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз - быстродействие ЭВМ первого поколения на электронных лампах.

Далее, почти 40 лет назад компьютеры типа Юнивак стоили около 2,5 млн. долларов. Сегодня же ЭВМ со значительно большим быстродействием, более широкими возможностями, более высокой надежностью, существенно меньшими габаритами и более простая в эксплуатации стоит примерно 2000 долларов. Каждые 2 года стоимость ЭВМ снижается примерно в 2 раза.

Очень большую роль в развитии компьютеров сыграли две ныне гигантские фирмы: Microsoft® и Intel®. Первая из них очень сильно повлияла на развитие программного обеспечения для компьютеров, вторая же стала известна благодаря выпускаемым ей лучшим микропроцессорам.

Пятое поколение ЭВМ"

Особого упоминания заслуживает так называемое пятое поколение, программа разработки которого была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров "пятого поколения" не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

 

Номенклатура видов компьютеров сегодня огромная: машины различаются по назначению, мощности, размерам, элементной базе и т.д. Поэтому классифицируют ЭВМ по разным признакам. Следует заметить, что любая классификация является в некоторой мере условной, поскольку развитие компьютерной науки и техники настолько бурное, что, например, сегодняшняя микроЭВМ не уступает по мощности миниЭВМ пятилетней давности и даже суперкомпьютерам недавнего прошлого. Кроме того, зачисление компьютеров к определенному классу довольно условно через нечеткость разделения групп, так и вследствии внедрения в практику заказной сборки компьютеров, где номенклатуру узлов и конкретные модели адаптируют к требованиям заказчика. Рассмотрим распространенные критерии классификации компьютеров.

 

Классификация по размеру

-настольные (desktop);

-портативные (notebook);

-карманные (palmtop).

Наиболее распространенными являются настольные ПК, которые позволяют легко изменять конфигурацию. Портативные удобны для пользования, имеют средства компьютерной связи. Карманные модели можно назвать "интеллектуальными" записными книжками, разрешают хранить оперативные данные и получать к ним быстрый доступ.

Классификация по назначению

-большие электронно-вычислительные машины (ЭВМ);

-миниЭВМ;

-микроЭВМ;

-персональные компьютеры(массовые, деловые, портативные, развлекательные, рабочие станции)

Большие ЭВМ применяют для обслуживания крупных областей народного хозяйства, миниЭВМ похожи на большие ЭВМ, но меньших размеров. Используют на крупных предприятиях, научных учреждениях и организациях. Часто используют для управления производственными процессами. МикроЭВМ доступны многим учреждениям. Для обслуживания достаточно вычислительной лаборатории в составе нескольких человек, с наличием прикладных программистов. Персональный компьютер (ПК) предназначен для обслуживания одного рабочего места и способен удовлетворить потребности малых предприятий и отдельных лиц. С появлением Интернета популярность ПК значительно возросла, поскольку с помощью персонального компьютера можно пользоваться научной, справочной, учебной и развлекательной информацией. Персональные компьютеры условно можно поделить на профессиональные и бытовые, но в связи с удешевлением аппаратного обеспечения, грань между ними размывается. С 1999 года введен международный сертификационный стандарт - спецификация РС99:

-массовый персональный компьютер (Consumer PC)

-деловой персональный компьютер (Office PC)

-портативный персональный компьютер (Mobile PC)

-рабочая станция (WorkStation)

-развлекательный персональный компьютер (Entertaiment PC)

 

 

Большие ЭВМ (Main Frame)

Применяют для обслуживания крупных областей народного хозяйства. Они характеризуются 64-разрядными параллельно работающими процессорами (количество которых достигает до 100), интегральным быстродействием до десятков миллиардов операций в секунду, многопользовательским режимом работы. Доминирующее положение в выпуске компьютеров такого класса занимает фирма IBM (США). Наиболее известными моделями суперЭВМ являются: IBM 360, IBM 370, IBM ES/9000, Cray 3, Cray 4, VAX-100, Hitachi, Fujitsu VP2000.

На базе больших ЭВМ создают вычислительный центр, который содержит несколько отделов или групп (структура которого изображена на рис. 2). Штат обслуживания - десятки людей.

Центральный процессор - основной блок ЭВМ, в котором происходит обработка данных и вычисление результатов. Представляет собой несколько системных блоков в отдельной комнате, где поддерживается постоянная температура и влажность воздуха.

Группа системного программирования - занимается разработкой, отладкой и внедрением программного обеспечения, необходимого для функционирования вычислительной системы. Системные программы обеспечивают взаимодействие программ с оборудованием, то есть программно-аппаратный интерфейс вычислительной системы.

Группа прикладного программирования - занимается созданием программ для выполнения конкретных действий с данными, то есть обеспечение пользовательского интерфейса вычислительной системы.

Группа подготовки данных - занимается подготовкой данных, которые будут обработаны на прикладных программах, созданных прикладными программистами. В частности, это набор текста, сканирование изображений, заполнение баз данных.

Группа технического обеспечения - занимается техническим обслуживанием всей вычислительной системы, ремонтом и отладкой аппаратуры, подсоединением новых устройств.

Группа информационного обеспечения - обеспечивает технической информацией все подразделения вычислительного центра, создает и сохраняет архивы разработанных программ (библиотеки программ) и накопленных данных (банки данных).

Отдел выдачи данных - получает данные от центрального процессора и превращает их в форму, удобную для заказчика (распечатка).

Большим ЭВМ присуща высокая стоимость оборудования и обслуживания, поэтому работа организована непрерывным циклом.

 

МиниЭВМ

Похожа на большие ЭВМ, но меньших размеров. Используют на крупных предприятиях, научных учреждениях и организациях. Часто используют для управления производственными процессами. Характеризуются мультипроцессорной архитектурой, подключением до 200 терминалов, дисковыми запоминающими устройствами, которые наращиваются до сотен гигабайт, разветвленной периферией. Для организации работы с миниЭВМ, нужен вычислительный центр, но меньший чем для больших ЭВМ.

МикроЭВМ

Доступны многим учреждениям. Для обслуживания достаточно вычислительной лаборатории в составе нескольких человек, с наличием прикладных программистов. Необходимые системные программы покупаются вместе с микроЭВМ, разработку прикладных программ заказывают в больших вычислительных центрах или специализированных организациях.

Программисты вычислительной лаборатории занимаются внедрением приобретенного или заказанного программного обеспечения, выполняют его настройку и согласовывают его работу с другими программами и устройствами компьютера. Могут вносить изменения в отдельные фрагменты программного и системного обеспечения.

Персональные компьютеры

Бурное развитие приобрели в последние 20 лет. Персональный компьютер (ПК) предназначен для обслуживания одного рабочего места и способен удовлетворить потребности малых предприятий и отдельных лиц. С появлением Интернета популярность ПК значительно возросла, поскольку с помощью персонального компьютера можно пользоваться научной, справочной, учебной и развлекательной информацией.
Персональные компьютеры условно можно поделить на профессиональные и бытовые, но в связи с удешевлением аппаратного обеспечения, грань между ними размывается. С 1999 года введен международный сертификационный стандарт - спецификация РС99:

-массовый персональный компьютер (Consumer PC)

-деловой персональный компьютер (Office PC)

-портативный персональный компьютер (Mobile PC)

-рабочая станция (WorkStation)

-развлекательный персональный компьютер (Entertaiment PC)

Большинство персональных компьютеров на рынке подпадают до категории массовых ПК. Деловые ПК - имеют минимум средств воспроизведения графики и звука. Портативные ПК отличаются наличием средств коммуникации отдаленного доступа (компьютерная связь). Рабочие станции - увеличенные требования к устройствам хранения данных. Развлекательные ПК - основной акцент на средствах воспроизведения графики и звука.

Классификация по размеру

-настольные (desktop);

-портативные (notebook);

-карманные (palmtop).

Наиболее распространенными являются настольные ПК, которые позволяют легко изменять конфигурацию. Портативные удобны для пользования, имеют средства компьютерной связи. Карманные модели можно назвать "интеллектуальными" записными книжками, разрешают хранить оперативные данные и получать к ним быстрый доступ.

Основание системы счисления

Коль скоро мы утверждаем, что система счисления основывается на ограниченном количестве цифр, осталось задаться вопросом "сколько", какое количество цифр достаточно для решения этой проблемы.

Оказывается, что минимальное количество цифр действительно существует, а максимальное — нет, точнее, оно ограничено не принципиальными причинами, а сугубо практическими (или какими-то условиями уже не математического свойства). В данный момент важно понять, что существует не одно множество цифр, образующих систему счисления. Это множество получило особое название — основание системы счисления.

Определение

Основание позиционной системы счисления — это количество различных знаков или символов (цифр), используемых для отображения чисел в данной системе.

Выбор количества цифр диктуется какими-либо потребностями реальной жизни, науки или удобствами обработки. Исторически этот выбор определялся привычками или традициями конкретного народа.

Пример

В Великобритании до недавнего времени была принята не десятичная система веса, длины, а использовались "допотопные" ярды, футы, дюймы и т. д. Только несколько лет назад английский парламент принял решение о переходе на десятичную систему, т. е. на метры, сантиметры и т. п. И поскольку англичане — очень консервативный народ, такой переход, возможно, будет продолжаться не один десяток лет. Как сказано выше, систем счисления может быть неограниченое количество. По значению этого основания и называются системы счисления. Мы рассмотрим только некоторые их них.

Перевод из 10-ой системы счисления в 2-ую, 8-ую, 16-ую.

Чтобы перевести число из десятичной системы в двоичную(8-ую, 16 -ую) надо производить последовательное деление на 2 (8, 16) до тех пор пока в частном не получиться число меньше делителя.
В качестве результата записать последние значения частного и выписать за ним все остатки в обратном порядке.
1. Способ: 1) 40(10)= > 101000(2) 2) 123(10)=>173(8) 3) 123(10)=>7B


2. Способ: 71(10)=> 100111(2)
71|1
35|1
17|1
8 |0
4 |0
2 |0
1

9. Система счисления - это изображение или запись числа с помощью различных знаков и цифр.

Разделяют системы счисления позиционные и непозиционные.

Непозиционные – в них значение каждой цифры не зависит от ее положения в ряду цифр, изображающих число.

I-1 V-5 X-10 L-50 C-100 В-500 M-1000

Позиционные - в них значения каждой цифры зависит от ее положения в ряду цифр, изображающих число.

Основания сс - это количество цифр и символов для записи любого числа называется базой сс

 

Определение

Кодовая таблица — это совокупность цифровых (двоичных) кодов и их значений.

Стоит обратить внимание на то, что до сих пор мы оперировали цифрами и числами, получаемыми из этих цифр при помощи позиционной системы записи. Теперь оказалось, что на самом деле это — только половина кодовой таблицы. О второй половине кодовой таблицы поговорим ниже.

А пока поговорим о построении кодовой таблицы.

Первая проблема, которую нам предстоит решить, заключается в том, чтобы определить количество строк, т. е. мы сначала должны задаться количеством разрядов, как это выяснилось в предыдущем разделе. Но возникает следующий вопрос: а чем это определяется, какой необходимостью?

Прежде всего, мы должны располагать предварительной информацией о количестве значений, которое нам предстоит кодировать. Если мы собрались кодировать только два значения, например "да" и "нет" или "черное" и "белое" (кстати, вполне реальная задача), т. е. такую информацию, которая состоит из двух сообщений, то потребуется всего один разряд (один бит), а соответствующая кодовая таблица (табл. 5.4) будет состоять из двух строк.

Двоичные коды Значение кодов
  Да Нет

 

Например, если для кодирования требуется добавить значение, которое обычно присутствует в анкетах "Не знаю!", то одного разряда окажется недостаточно. Мы уже эту ситуацию обсуждали и знаем, что необходимо задействовать два разряда

Двоичные коды Значение кодов
  Да Нет Не знаю

 

Самая распространенная система кодирования латиницы — ASCII — использует 7 бит на символ. Другие алфавиты обычно кодируются более сложным образом: символы алфавита получают коды в диапазоне от 128 до 255, а коды от 0 до 127 соответствуют кодам ASCII. Таким образом, любой символ этих алфавитов, в том числе и в многоязычных текстах, использующих сочетание национального алфавита и латиницы, может быть представлен 8-ю битами или одним байтом. Но для японских слоговых азбук, а тем более для китайской иероглифики, 255 кодов явно
недостаточно, и приходится использовать многобайтовые кодировки. Распространенное обозначение таких кодировок — DBCS (Double Byte Character Set — набор символов, кодируемый двумя байтами).
Двух байтов, в принципе, достаточно, чтобы сформировать единую кодировку для всех современных алфавитов и основных подмножеств иерогли-фнки. Попытка стандартизовать такое представление — Unicode — пока что не имеет полного успеха. Отчасти это можно объяснить тем, что потребность в представлении разноязыких текстов в пределах одного документа ограничена, кроме того, слишком много старого программного обеспечения использует предположение о том, что символ занимает не более байта. Такие программы не могут быть легко преобразованы для работы с Unicode.
Используются две основные кодировки латиницы -- ASCII и EBCDIC (Extended Binary Coded Decimal Information Code), применяемая системами AS/400, System/370, System/390 и z90 фирмы IBM. Для представления русского варианта кириллицы существует три основных кодировки: альтернативная (известная также как ср866), ср!251 и KOI-8 и ряд менее широко используемых (ISO 8892-5 и др.).
Арифметические операции над такими "числами" обычно бессмысленны, зато большой смысл имеют операции сравнения. Операции сравнения в современных процессорах реализованы как неразрушающее вычитание — мы производим те же действия, что и при обычном двоичном вычитании, но запоминаем не сам результат, а лишь флаги знака, переноса и равенства результата нулю. На основании значений этих флагов определяем результат сравнения: если разность равна нулю, сравниваемые символы одинаковы, если она положительна или отрицательна, один из символов больше или меньше другого.
Естественно, чаще всего мы хотим интерпретировать результаты посимвольного сравнения как лексикографическое (алфавитное) "больше" или "меньше" (для русского алфавита, "а" меньше, чем "б"). Проще всего это делать, если нумерация символов совпадает с их порядком в алфавите, но далеко не для всех распространенных кодировок это справедливо.
В кодировке ASCII (American Standard Code for Information Interchange — Американский стандартный код обмена информацией), например, все символы латиницы, цифры и большинство распространенных знаков препинания обозначаются кодами от 0 до 127, при этом коды букв расставлены в соответствии с латинским алфавитом. В США, как и в других англоязычных странах, латинский алфавит используется в неизмененном виде, а для передачи звуков, отсутствовавших в оригинальном латинском языке, применяется причудливая орфография. Большинство других европейских алфавитов обходит проблему несоответствия фонетик путем расширения набора символов латиницы — например, в немецком



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 764; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.9.172 (0.014 с.)