Уровни структурной организации белковых молекул 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Уровни структурной организации белковых молекул



 

Первичная структура — это конфигурация полипептидной цепи, которая формируется в результате образования пептидной связи между остатками АК.

Постулаты (принципы формирования пептидной связи), сформулированные Л. Поллингом и Р. Кори:

1) атомы, образующие пептидную связь, копланарны (расположены в одной плоскости); вращение атомов или групп атомов вокруг пептидной связи невозможно;

2) принцип эквивалентности вклада АК-остатков в образование пептидной связи и, тем самым, в образование полипептидной цепи (исключение пролин);

3) принцип максимума водородных связей.

 

Первичную структуру белка стабилизируют (поддерживают):

- пептидные связи (между АК-остатками);

- дисульфидные связи (между свободными –SH-группами цистеина).

Первичная структура белка несет информацию о его пространственной структуре.

Вторичная структура белка — локальная конформация, обусловленная вращением отдельных участков полипептидной цепи вокруг одинарных ковалентных связей.

Основные связи, которые стабилизируют вторичную структуру, — водородные.

Виды вторичной структуры:

· α-спираль (правозакрученная)

· β-структура • β-слой

  Параллельная     Антипараллельная  

· β-поворот

Несколько участков полипептидной цепи, организованных в пространстве в форме a-спирали или b-структуры, могут объединяться, формируя надвторичную структуру. В результате в молекуле белка образуются домены (функциональные или структурные).

Третичная структура белка — это расположение в пространстве всей полипептидной цепи, отдельные участки которой имеют собственную локальную конформацию.

Этапы формирования третичной структуры (см. рис.):

Поддержанию третичной структуры белка способствуют гидрофобные связи, которые образуются внутри молекулы. В образовании этих связей принимают участие неполярные радикалы аминокислот. Могут также образовываться другие нековалентные связи.

У белка, имеющего третичную структуру, на поверхности молекулы формируется участок, который может присоединять к себе другие молекулы, называемые лигандами. Этот участок называется активный центр и формируется из радикалов аминокислот, которые сближаются друг с другом при формировании третичной структуры. Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра структуре лиганда.

Четвертичная структура формируется при объединении нескольких полипептидных цепей, имеющих третичную структуру. Образованный таким образом белок обладает новой функцией.

 

Белки с четвертичной структурой называются олигомерными, а составляющие их индивидуальные полипептидные цепи — протомерами или мономерами. Такие соединения стабилизируются водородными связями и электростатическими взаимодействиями между АК-остатками, расположенными на поверхности протомеров.

Преимущества белков с четвертичной структурой:

1) экономия генетического материала;

2) уменьшение числа ошибок при синтезе белка;

3) качественное разнообразие белков — появление у белков новых функций.

Сложные белки

 

Многие белки в своем составе, помимо аминокислот, могут содержать и небелковые компоненты. Эти соединения в составе белков называют простетической группой. Простетические группы с белком соединяются разными типами связей.

В зависимости от химического состава простетической группы сложные белки можно разделить на несколько классов.

1. Хромопротеины. Это белки, простетическая группа которых имеет окраску. К ним относятся многие белки, содержащие металлы. Например, церулоплазмин — белок, содержащий медь, имеет синюю окраску. Белки, содержащие железо: гемоглобин, миоглобин, цитохромы. Они имеют красную окраску. Присутствие витамина B2 придает белкам желтый цвет (флавопротеины).

Простетическая группа хромопротеинов связана с гистидином полипептидной цепи координационными связями.

2. Гликопротеины. Это белки, простетическая группа которых содержит углеводы. Углевод соединяется с белковой частью ковалентными связями. В соединении с углеводом участвует OH-группа аминокислоты серина или треонина. Гликопротеины — это часть белково-углеводных комплексов. Этим белкам принадлежит важная роль в структурной организации клеток и тканей, они выполняют защитные функции. Основная часть внеклеточных белков — это гликопротеины.

3. Липопротеины. Это белки, простетическая группа которых содержит липиды. Они обеспечивают транспорт липидов в крови, являются компонентами биологических мембран. Связи между белковой частью молекулы и липидом — гидрофобные или ионные.

4. Металлопротеины. Это белки, простетическая группа которых представлена металлами. Они транспортируют или участвуют в депонировании металлов (ферритин, трансферрин). Между белком и простетической группой образуются координационные связи.

5. Нуклеопротеины. Простетическая группа у таких белков — нуклеиновая кислота. Различают дезоксирибонуклеопротеины (простетическая группа — ДНК) и рибонуклеопротеины (простетичесая группа — РНК). Им принадлежит важная роль в хранении, передаче и реализации генетической информации. Между белком и молекулой нуклеиновой кислоты образуются ионные связи.

6. Фосфопротеины. Белки, которые содержат в своем составе фосфорную кислоту. Используются для регуляции процессов жизнедеятельности (фосфорилирование / дефосфорилирование). Между белком и остатком фосфорной кислоты формируются сложноэфирные связи, в образовании которых участвует OH-группа серина.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 547; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.106.100 (0.008 с.)