Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Элементы теории множеств и математической логики. Действительные числа. Грани. Понятие функции. Обратная функция.Содержание книги
Поиск на нашем сайте
Числовые множества задаются на оси действительных чисел R. На этой оси выбирают масштаб и указывают начало отсчета и направление. Наиболее распространенные числовые множества: ‑ множество натуральных чисел; ‑ множество целых чисел; – множество рациональных или дробных чисел; ‑ множество действительных чисел. Кантор описывает множество следующим образом: Множество есть любое собрание определенных и различимых между собой объектов нашей интуиции и интеллекта, мыслимое как единое целое. Эти объекты называются элементами множества . Грани. Множество всех рациональных чисел является счетным множеством. Счетным является множество всех точек плоскости (пространства) имеющих рациональные координаты. Множество всех действительных чисел является несчетным: оно имеет мощность, называемую континуумом. Некоторое непустое подмножество множества действительных чисел называют ограниченным сверху (снизу), если существует действительное число такое, что выполняется неравенство (). Всякое число с указанным свойством называют верхней (нижней) гранью множества . Непустое подмножество множества действительных чисел называется ограниченным, если оно ограничено и сверху и снизу. В противоположность этому определению, множество называется неограниченным сверху (снизу), если какое бы число мы бы не предложили в качестве верхней (нижней) границы множества , всегда найдется элемент этого множества, который будет больше (меньше) . Множество, неограниченное как сверху, так и снизу, называется неограниченным множеством. Наименьшую из верхних граней непустого подмножества множества действительных чисел называют точной верхней гранью этого множества и обозначают sup . Наибольшую из нижних граней непустого подмножества множества действительных чисел называют точной нижней гранью этого множества и обозначают inf . Символы sup и inf являются сокращениями от supremum (самый верхний) и infimum (самый нижний). Примем без доказательства утверждение о том, что всякое ограниченное сверху (снизу) множество имеет точную верхнюю (нижнюю) грань. Обра́тная фу́нкция — функция, обращающая зависимость, выражаемую данной функцией. Понятие последовательности и ее предела. Бесконечно малые. Свойства пределов. Монотонные последовательности. Число «е». Числовой последовательностью называется числовая функция, определенная на множестве натуральных чисел. Если функцию задать на множестве натуральных чисел , то множество значений функции будет счетным и каждому номеру ставится в соответствие число . В этом случае говорят, что задана числовая последовательность. Числа называют элементами или членами последовательности, а число – общим или –м членом последовательности. Каждый элемент имеет последующий элемент . Это объясняет употребление термина «последовательность». Задают последовательность обычно либо перечислением ее элементов , либо указанием закона, по которому вычисляется элемент с номером , т.е. указанием формулы ее ‑го члена . Бесконечный предел Наряду с бесконечно малыми существуют и бесконечно большие величины, являющиеся обратными по отношению к бесконечно малым. Поэтому является бесконечно большой (, при ), если такое, что при . Говорят, что предел последовательности равен , если для такое, что выполняется неравенство: . В отличие от бесконечно малых последовательностей, бесконечно большие могут не иметь предела. Например, по модулю неограниченно растет, но сама величина не имеет определенного стремления. Свойства пределов: Пределы обладают следующими свойствами: - Если – есть постоянная функция, то ; - Если существуют , и в некоторой окрестности точки функция ограничена, т.е. , тогда ; - Если существуют и при каком-то условии, то (при том же условии). Это свойство справедливо для любого конечного числа функций; - Если существуют и при каком-то условии, то (при том же условии). Это свойство также справедливо для любого конечного числа функций, в частности, справедлива формула ; - Если существуют и при каком-то условии, то (при том же условии); - Если и существуют , и , то . Монотонная последовательность — это последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают. Подобные последовательности часто встречаются при исследованиях и имеют ряд отличительных особенностей и дополнительных свойств. Последовательность из одного числа не может считаться возрастающей или убывающей. Число «e» — математическая константа, основание натурального логарифма, трансцендентное число. Иногда число e называют числом Эйлера или числом Непера. Обозначается строчной латинской буквой «e».Число e играет важную роль в дифференциальном и интегральном исчислении, а также во многих других разделах математики.
|
||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 368; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.254.35 (0.008 с.) |