Статистические методы выявления наличия корреляционной связи между 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Статистические методы выявления наличия корреляционной связи между

Поиск

Признаками

 

Для ответа на вопрос, существует или нет корреляционная связь между двумя признаками, используют ряд специфических методов: параллельное сопоставление рядов, построение групповой и корреляционной таблиц, графическое изображение корреляционного поля.

Простейшим способом обнаружения связи является параллельное сопоставление двух рядов – ряда значений факторного признака и соответствующих ему значений результативного признака. Значения факторного признака располагаются в возрастающем порядке, прослеживая тенденцию изменения соответствующих значений результативного признака . В случае, когда возрастание величины факторного признака явно влечёт за собой рост величины результативного, говорят о возможном наличии прямой корреляционной связи. Если с увеличением значение уменьшается, то можно предполагать обратную корреляционную связь между признаками.

В качестве примера рассмотрим данные о выпуске продукции (результативный признак) и среднегодовой стоимости основных производственных фондов (факторный признак) по 20 предприятиям. В табл. 20 предприятия ранжированы по среднегодовой стоимости основных производственных фондов.

 

Табл.20.

№ предприятия Среднегодовая стоимость основных производственных фондов, млн.руб. Выпуск продукции, млн.руб. № предприятия Среднегодовая стоимость основных производственных фондов, млн.руб. Выпуск продукции, млн.руб.
           
           
           
           
           
           
           
           
           
           

 

В целом для всей совокупности предприятий можно видеть, что с увеличением стоимости основных производственных фондов увеличивается выпуск продукции. Это позволяет говорить о возможном наличии прямой корреляционной связи.

С помощью метода параллельного сопоставления двух рядов можно дать лишь самую общую характеристику связи, используя относительно небольшое имеющееся число наблюдений. Иногда наличие большого числа различных значений результативного признака, соответствующих одному и тому же значению признака-фактора, затрудняет восприятие параллельного сопоставления рядов. В таких случаях проводится построение корреляционной или групповой таблицы.

Рассмотрим построение корреляционной таблицы на примере данных табл.20. Вначале проводится группировка значений факторного и результативного признаков: по формуле Стерджесса определяется число групп рассчитываются величины интервалов для факторного и результативного признаков (, ); данные по количеству единиц совокупности, отвечающих определённому сочетанию значений признаков и заносятся в корреляционную таблицу. В корреляционной таблице факторный признак обычно располагают в строках, а результативный признак - в столбцах таблицы. Числа, расположенные на пересечении строк и столбцов таблицы, означают частоту повторения данного сочетания значений и (табл.21).

 

Табл.21.

Группы (интервалы) по Группы (интервалы) по
59–89,2 89,2– 119,4 119,4-149,6 149,6-179,8 179,8-210
40 – 56          
56 - 72          
72 - 88          
88 - 104          
104 - 120          

 

Корреляционная таблица даёт возможность выдвинуть предположение о наличии или отсутствии связи, а также выяснить её направление. Если частоты в таблице расположены по диагонали из левого верхнего угла в правый нижний, то можно предположить наличие прямой корреляционной зависимости между признаками. Если же частоты расположены по диагонали из правого верхнего угла в левый нижний, то предполагают наличие обратной связи между признаками

При построении групповой таблицы все наблюдения разбиваются на группы по факторному признаку, и по каждой группе вычисляют средние значения результативного признака. Групповая табл.22 построена по данным табл.20.

 

Табл.22.

Группы предприятий по среднегодовой стоимости основных производственных фондов, млн.руб. Среднее значение выпуска продукции, млн.руб.
40 - 56  
56 - 72 114,3
72 - 88 129,7
88 - 104 129,3
104 - 120  

 

В групповой таблице сравниваются средние групповые значения результативного признака. Если они увеличиваются с ростом признака-фактора, то можно предположить наличие прямой корреляционной зависимости.

Для предварительного выявления наличия связи и её характера применяют графический метод. Для этого на графике строят точки, соответствующие индивидуальным значениям признака-фактора и результативного признака. Совокупность полученных точек называют “полем корреляции”. Далее различными способами в пределах “поля корреляции” проводят график, интерпретирующий эмпирическую линию связи между факторным и результативным признаком. Если эмпирическая линия связи по своему виду приближается к прямой, то предполагается наличие линейной зависимости между признаками. Если же она по виду ближе к какой-либо кривой, то может предполагаться наличие соответствующей криволинейной связи между признаками.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 234; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.131.103 (0.009 с.)