Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сложная деструктивная дилеммаСодержание книги
Поиск на нашем сайте
Дилемма такого вида содержит одну посылку, состоящую из двух условных суждений с разными основаниями и разными следствиями; вторая посылка есть дизъюнкция отрицаний обоих следствий; заключение является дизъюнкцией отрицаний обоих оснований. В форме, обычной для традиционной логики, сложную деструктивную дилемму можно представить в виде следующей схемы: Если А есть В, то С есть D; если Е есть F, то К есть М. С не есть D или К не есть М. ___________________________ А не есть В или Е не есть F.
Примером рассуждения по форме сложной деструктивной дилеммы может быть следующий вывод:
Если Петров честен, то, не выполнив задания сегодня, он признается в этом, а если Петров добросовестен, то он выполнит задание к следующему разу. Но Петров не признался в том, что он сегодня не выполнилзадание, или не сделал его к следующему разу. __________________________________________________ Петров не честен или не добросовестен4.
Схема сложной деструктивной дилеммы такая: Этой схеме соответствует формула которая является законом логики.
В предыдущих схемах, соответствующих четырем видам дилеммы, во второй (разделительной) посылке союз «или» взят в соединительно-разделительном смысле, т. е. взята нестрогая дизъюнкция (v). Будут ли формулы алгебры логики, соответствующие дилеммам (четыре вида), тождественно-истинными, если союз «или» употребляется в строго разделительном смысле, т. е. если взята строгая дизъюнкция (v)? Являются ли законами логики следующие формулы: 1) 2) 3) 4) (Так как конъюнкция связывает «теснее», чем импликация, то скобки можно опустить.) Автором этой книги показано5, что независимо от того, какая дизъюнкция (строгая или нестрогая) входит в соответствующие формулы, простым дилеммам (конструктивной и деструктивной) соответствуют законы логики. Сложным дилеммам (и конструктивной, и деструктивной) соответствуют законы логики лишь в том случае, если, союз «или» рассматривается как нестрогая дизъюнкция. Но в ходе рассуждения, построенного в форме сложной дилеммы, человек употребляет именно строгую дизъюнкцию, ибо перед ним две взаимоисключающие возможности (причем обе они нежелательны). Это несоответствие возникло из-за отсутствия полного совпадения смысла союза «если... то» и смысла материальной импликации (в двузначной логике). Некоторые логики под дилеммой понимают такое умозаключение:
Если А есть В, то С есть D; если Е есть F, то G есть H. Но С не есть D и G не есть H. ___________________________________ Следовательно, А не есть В и Е не есть F.
Пример: Если бы я был богат, то я бы купил автомобиль. Если бы я был бесчестен, то я украл бы таковой. Но я его не купил и не украду. _______________________________ Я не богат и не бесчестен.
Но здесь вторая посылка и заключение являются конъюнктивными, а не дизъюнктивными суждениями (как это должно быть по правилам построения дилеммы), поэтому приведенное выше умозаключение не является дилеммой, так как в нем нет разделительной посылки, характерной для дилеммы. Это умозаключение есть простая сумма двух условно-категорических умозаключений, построенных по правилу modus tollens, который дает истинное заключение. Формула modus tollens такая:
1. Если бы я был богат, то я бы купил автомобиль. Я не куплю автомобиль. ________________ Я не богат.
2. Если бы я был бесчестен, то я украл бы автомобиль. Я не украду автомобиль. _________________ Я не бесчестен.
Итак, перед нами условно-конъюнктивное, а не условно-дизъюнктивное (лемматическое) умозаключение.
Трилемма Трилеммы, так же как и дилеммы, могут быть конструктивными и деструктивными; каждая из этих форм в свою очередь может быть простой или сложной. Простая конструктивная трилемма состоит из двух посылок и заключения. В первой посылке констатируется то, что из трех различных оснований вытекает одно и то же следствие; вторая посылка представляет собой дизъюнкцию этих трех оснований; в заключении утверждается следствие.
Если у больного грипп, то рекомендуется обратиться к врачу; если у больного острое респираторное заболевание, то рекомендуется обратиться к врачу; если у больного ангина, то рекомендуется обратиться к врачу. У данного больного или грипп, или острое респираторное заболевание, или ангина. __________________________________________________ Данному больному рекомендуется обратиться к врачу.
В сложной конструктивной трилемме первая посылка состоит из трех различных оснований и трех различных вытекающих из них следствий, т. е. содержит три условных суждения. Вторая посылка является дизъюнктивным суждением, в котором утверждается (по крайней мере) одно из трех оснований. В заключении утверждается (по крайней мере) одно из трех следствий. Приведем пример сложной конструктивной трилеммы. В некоторых сказках говорится о надписях на перекрестках трех дорог, которые содержат, например, такого рода трилемму:
Кто поедет прямо, будет в холоде и голоде; кто поедет направо, тот сам останется цел, а конь будет убит; кто поедет налево, тот сам будет убит, а конь останется цел. Человек может поехать либо прямо, либо направо, либо налево. _____________________________________________________________ Он или будет в холоде и голоде, или сам останется цел, а конь будет убит, или сам будет убит, а конь останется цел.
Приведем еще пример трилеммы.
В своих воспоминаниях о Великой Отечественной войне Л. И. Баркович пишет об истории Ладожской дороги. Ладожская дорога, Дорога жизни, была фронтом. Направляясь в Ленин- град по Ладожскому озеру, Иван Игнатьевич Баркович, будучи шофером грузовой машины, взял с собой сына Леонида, так как вторую машину — полуторку вести было некому. В автоколонне сын двигался за машиной отца. Дорога была опасна. Враг держал ее под огнем, лед расходился, образуя просветы. Вдруг машина отца остановилась — оказалось, кончился бензин. Леонид Баркович рассуждает: «У моей машины горючее тоже было на исходе. Переливать половину оставшегося бензина в бак отцовского «газика» было глупо — горючее могло кончиться раньше, чем мы добрались бы до берега. Поехать вперед, сообщить, что тут стоит машина? Но помощь может прийти поздно... Взять на буксир его машину — лед мог не выдержать». Леонид принял решение: «Давай трос! На буксире у меня войдешь!» Добрались благополучно. Деструктивные трилеммы, так же как и деструктивные дилеммы, бывают простые и сложные. Структура их аналогична структуре дилеммы, только предусматриваются не две, а три возможные альтернативы. Приведем пример простой деструктивной трилеммы.
Если в ближайшее время погода ухудшится» то у него будут болеть суставы, повысится артериальное давление и будет ломить поясница. Известно, что у него или не болят суставы, или не повысилось артериальное давление, или не ломит поясница. __________________________________________ В ближайшее время погода не ухудшится.
В математике структура трилеммы используется тогда, когда возникают три возможных варианта решения задачи, доказательства теоремы и предстоит выбор одного из них.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 780; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.91.130 (0.01 с.) |