Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Земля, XX век — современная модельСодержание книги
Поиск на нашем сайте
Что же лежит в основе современных представлений о внутреннем строении Земли? Как ни странно, но эти основы можно разделить по стародавнему обычаю на три группы — три «кита». Прежде всего представление о составе нашей планеты дает лава, вылившаяся из недр через жерла вулканов и трещины. В большинстве случаев она имеет базальтовый состав. И геологи так ее и называют — базальтовая лава. Кроме того, мы доподлинно знаем о существовании больших гранитных массивов в докембрийских толщах коры. Второй «кит» тоже «вещественный». Это прилетающие к нам из космоса метеориты. Ведь по идее они должны быть из того же первичного вещества, из которого слепился и весь земной шар. Подавляющее большинство космических гостей состоит из плотной горной породы — темно-зеленого перидотита и из железа. Наконец, третий «кит» — скачкообразное изменение скоростей распространения сейсмических волн внутри Земли. Оно позволяет предположить, что так же скачкообразно меняется и плотность вещества внутри нашей планеты, нарастая с глубиной. Все это заставляет нас предположить, что внутреннее строение Земли очень сложно. А чтобы изучать сложные объекты, в науке уже давно пользуются приближенными моделями. То есть более или менее простыми и наглядными картинами, которые примерно соответствуют имеющимся знаниям. В геофизике под моделью Земли понимают как бы разрез нашей планеты. На нем должно быть ясно видно, как меняются такие важные свойства земных недр, как плотность, давление, скорость распространения сейсмических волн, температура, ускорение силы тяжести, электропроводность и так далее. Считается, что первые шаги в построении реальной модели внутреннего строения нашей планеты, с учетом всей имеющейся геофизической информации, накопленной за много лет, сделали американские геофизики Адамс и Вильямсон в 1923 году. Однако сейсмологи в те годы еще не могли дать достаточно точных значений для скоростей упругих колебаний. И потому работа американцев страдала многими неточностями. Исправить недостатки и уточнить скорости взялись два крупнейших геофизика тридцатых годов. С одним из них мы уже встречались, когда разговор шел о гипотезах происхождения Земли. Это Гарольд Джефрис, профессор Кембриджского университета в Англии. Другой — Бено Гутенберг, немецкий ученый, эмигрировавший из фашистской Германии за океан. Целых десять лет продолжалась их работа. Результаты, достигнутые Джефрисом и Гутенбергом, позволили австралийскому геофизику Буллену, стажировавшемуся у Джефриса, построить новую модель Земли, в которой он ввел удобное разделение на зоны. И все-таки к началу 50-х годов классический период в геофизике, опиравшийся в основном на методы механики, закончился. В Советском Союзе и в США появились работы В. А. Магницкого и Ф. Берча, применивших для геофизических целей современные методы физики твердого тела и физики высоких давлений. Я уже рассказывал немного об их опытах и выводах. В результате была построена современная модель оболочки Земли, которая включает в себя литосферу и верхние слои мантии. Вы можете ее увидеть на рисунке графике с пояснительными надписями. Постарайтесь призвать на помощь свое воображение, чтобы за скромной линией графика увидеть сложность строения и буйство стихий внутри планеты. Конечно, я понимаю, что график не столь нагляден и не так красив, как гравюры прошлых веков. Но у него есть одно неоспоримое преимущество перед последними: он намного правдоподобнее. На приведенном рисунке вы видите сейсмическую модель Земли, то есть отображающую изменения плотности вещества недр. Но такие же модели можно построить и для других свойств планеты. А теперь несколько слов объяснения. Прежде всего под жесткой корой — литосферой, плиты которой мы сравнивали с громадными льдинами-айсбергами, плавающими на «океане подкорового вещества», примерно с семидесятикилометровой глубины начинается новый, неизвестный слой. В нем скорость распространения сейсмических волн резко падает. Это — астеносфера. Кое-где местами в ней располагаются первичные магматические очаги вулканов. Там плавится и кипит базальтовая магма, которая потом по трещинам и вулканическим каналам поднимается на поверхность. Температура этих очагов очень близка к температуре плавления глубинного вещества мантии. И потому они увеличивают вязкость всего подкорового вещества.
Разрез Земли по экватору. 1 — осадки; 2 — граниты; 3 — базальты; 4 — мантия.
Конечно, астеносферу можно назвать текучей лишь в сравнении с каменными монолитами. Невероятно медленно движется нечто, что составляет подкоровый слой, перетекая с места на место. Вы, наверное, знакомы с варом — черной густой смолой, которая применяется в строительном деле. Вар легко колется на куски. Значит, он твердый. Но оставьте его на долгое время в покое — и кусок растечется лужей, которая будет так же колоться. Вещество астеносферы еще более вязкое, чем вар, но и оно способно перетекать из одного места в другое. Только очень медленно. Примерно с двухсотпятидесятого километра глубины скорость распространения сейсмических волн снова начинает расти. Здесь уже давление в недрах так велико, что температура плавления сдавленного вещества повышается. Вещество мантии постепенно уплотняется, и скорости упругих колебаний в нем растут. Но растут медленно, будто накапливают силы. Потом вдруг резкий скачок! Ученые полагают, что здесь начинается зона фазовых переходов, о которых я вам тоже рассказывал. Здесь оливин превращается в более твердую шпинель. И снова с глубиной идет плавное нарастание скоростей до зоны нового скачка — второй зоны фазовых переходов. Может быть, там происходит распад силикатов на окислы. Я уже говорил о стишовите, можно представить себе также уплотненные окислы и других элементов — железа, алюминия… А может быть, и наоборот, основные породообразующие минералы оболочки Земли переходят в более сложные структуры… Пока об этом ученые спорят. Но дальше, начиная с глубин в 700 километров, скорости распространения сейсмических волн снова плавно нарастают под влиянием все увеличивающегося давления вышележащих слоев. И так происходит до самой границы с ядром Земли. Ядро — это совсем особый вопрос и совершенно специфическая область земных недр. О ядре и о наших современных представлениях о нем я хотел бы вам рассказать отдельно.
Из чего состоит ядро Земли
Идей о строении ядра Земли было высказано бесчисленное множество. Дмитрий Иванович Соколов — русский геолог и академик — говорил, что вещества внутри Земли распределяются, словно шлак и металл в плавильной печи. Это образное сравнение не раз получало подтверждение. Ученые внимательно изучали прилетавшие из космоса железные метеориты, считая их осколками ядра распавшейся планеты. Значит, и у Земли ядро должно состоять из тяжелого железа, находящегося в расплавленном состоянии. В 1922 году норвежский геохимик Виктор Мориц Гольдшмидт выдвинул идею общего расслоения вещества Земли еще в ту пору, когда вся планета находилась в жидком состоянии. Он это вывел по аналогии с металлургическим процессом, изученным на сталелитейных заводах. «В стадии жидкого расплава, — говорил он, — вещество Земли разделилось на три несмешивающихся жидкости — силикатную, сульфидную и металлическую. При дальнейшем остывании эти жидкости образовали главные оболочки Земли — кору, мантию и железное ядро!» Однако ближе к нашему времени идея «горячего» происхождения нашей планеты все больше уступала «холодному» творению. И в 1939 году Лодочников предложил другую картину формирования недр Земли. К этому времени уже была известна идея фазовых переходов вещества. Лодочников предположил, что фазовые изменения вещества с увеличением глубины усиливаются, в результате чего вещество разделяется на оболочки. При этом ядро вовсе не обязательно должно быть железным. Оно может состоять из переуплотненных силикатных пород, находящихся в «металлическом» состоянии. Эта идея была подхвачена и развита в 1948 году финским ученым В. Рамзеем. Получалось, что хоть ядро Земли и имеет иное физическое состояние, чем мантия, но причин считать его состоящим именно из железа нет никаких. Ведь переуплотненный оливин мог быть столь же тяжелым, как и металл… Так появились две исключающие друг друга гипотезы о составе ядра. Одна — развитая на основе идей Э. Вихерта о железо-никелевом сплаве с небольшими добавками легких элементов в качестве материала ядра Земли. И вторая — предложенная В. Н. Лодочниковым и развитая В. Рамзеем, гласящая о том, что состав ядра не отличается от состава мантии, но вещество в нем находится в особо плотном металлизированном состоянии. Чтобы решить, в чью сторону должна склониться чаша весов, ученые многих стран ставили в лабораториях опыты и считали, считали, сравнивая результаты своих расчетов с тем, что показывали сейсмические исследования и лабораторные эксперименты.
Модель Земли. XX век.
В 60-л годах специалисты окончательно пришли к выводу: гипотеза металлизации силикатов, при давлениях и температурах, господствующих в ядре, не подтверждается! Более того, проделанные исследования убедительно доказывали, что в центре нашей планеты должно содержаться не меньше восьмидесяти процентов всего запаса железа… Значит, все-таки ядро Земли — железное? Железное, да не совсем. Чистый металл или чистый металлический сплав, сжатые в центре планеты, были бы слишком тяжелы для Земли. Следовательно, нужно предположить, что вещество внешнего ядра состоит из соединений железа с более легкими элементами — с кислородом, алюминием, кремнием или серой, которые больше всего распространены в земной коре. Но с какими из них конкретно? Это неизвестно. И вот советский ученый Олег Георгиевич Сорохтин предпринял новое исследование. Попробуем проследить в упрощенном виде ход его рассуждений, изложенный в интересной книге «Глобальная эволюция Земли». Основываясь на последних достижениях геологической науки, советский ученый делает вывод, что в первый период образования Земля была скорее всего более или менее однородной. Все ее вещества примерно одинаково распределялись по всему объему. Однако со временем более тяжелые элементы, например железо, стали опускаться, так сказать, «тонуть» в мантии, уходя все глубже к центру планеты. Если это так, то, сравнивая молодые и старые горные породы, можно в молодых ожидать меньшее содержание тяжелых элементов, того же железа, широко распространенного в веществе Земли. Изучение древних лав подтвердило высказанное предположение. Однако чисто железным ядро Земли быть не может. Для этого оно слишком легкое. Что же явилось спутником железа на его пути к центру? Ученый перепробовал множество элементов. Но одни плохо растворялись в расплаве, другие оказывались несовместимы. И тогда у Сорохтина возникла мысль: не был ли спутником железа самый распространенный элемент — кислород? Правда, расчеты показывали, что соединение железа с кислородом — окись железа — вроде бы легковата для ядра. Но ведь в условиях сжатия и нагрева в недрах окись железа тоже должна претерпеть фазовые изменения. В условиях, существующих вблизи центра Земли, лишь два атома железа способны удержать один атом кислорода. Значит, плотность полученной окиси станет больше… И снова расчеты, расчеты. Но зато каково удовлетворение, когда полученный результат показал, что плотность и масса земного ядра, построенного из окиси железа, претерпевшей фазовые изменения, дает точно ту величину, которую требует современная модель ядра! Вот она — современная и, пожалуй, самая правдоподобная за всю историю ее поисков модель нашей планеты. «Внешнее ядро Земли состоит из окиси железа Fe2O, внутреннее ядро — из металлического железа или сплава железа с никелем, — пишет в своей книге Олег Георгиевич Сорохтин. — Переходный слой F между внутренним и внешним ядром можно считать состоящим из сернистого железа — троиллита FeS». В создании современной гипотезы о выделении ядра из первичного вещества Земли принимают участие многие выдающиеся геологи и геофизики, океанологи и сейсмологи — представители буквально всех отраслей науки, изучающей планету. Процессы тектонического развития Земли, по мнению ученых, будут продолжаться в недрах еще довольно долго, по крайней мере впереди у нашей планеты есть еще пара миллиардов лет. Лишь после этого необозримого срока Земля остынет и превратится в мертвое космическое тело. Но что к этому времени будет?.. Сколько лет насчитывает человечество? Миллион, два, ну, два с половиной. И за этот срок люди не только поднялись с четверенек, приручили огонь и поняли, как извлекать энергию из атома, они послали автоматы на другие планеты Солнечной системы и освоили ближний космос для технических нужд. Исследование, а затем и использование глубоких недр собственной планеты — программа, которая уже стучится в дверь научного прогресса. И вам, сегодняшним школьникам, ее осуществлять.
|
||||
Последнее изменение этой страницы: 2022-01-22; просмотров: 76; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.73.248 (0.015 с.) |