Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Витамин N - липоевая кислота.
Содержание книги
- Д. Опишите значение процесса, в котором участвует данная реакция.
- Фермент является димером, состоит из двух субъединиц: В (мозговая ) и М (мышечная).
- Д. Рассчитайте коэффициент Р/О каждой реакции, ответ поясните.
- Г. Опишите механизм реакций, происходящих с участием данного кофермента и укажите их биологическое значение.
- В. Охарактеризуйте процесс, в котором происходит данная реакция.
- Г. Охарактеризуйте процесс, в котором происходит данная реакция.
- Г. Укажите значение процессов, в которых принимает участие данный витамин.
- Пируваткарбоксилаза D. Карбоксибиотин
- Г. Найдите (по метаболической карте) и опишите реакции 3-х различных процессов, происходящих с участием данного витамина и укажите значение этих процессов.
- В. Объясните биологическое значение этих реакций.
- Б. Каким образом наличие белков предохраняет желтки от порчи.
- Б. Назовите коферменты, которые могут из них образовываться. Расшифруйте их название. . Назовите функции этих коферментов и виды обмена веществ, в которых Они участвуют.
- Б. Изобразите схемы цпэ для каждого из указанных субстратов (используйте метаболические карты).
- В. Объясните механизм разобщение окисления и фосфорилирования в каждом из выбранных случаев.
- Г. Сколько молей атр могло бы образоваться в нормальных условиях при окислении 1 моль пирувата. Объясните ответ, используя метаболическую карту.
- В. Определите коэффициент р/о для данной реакции. Что такое коэффициент фосфорилирования. Какой он должен быть в норме и как изменяется при патологии.
- Г. Опишите значение процесса, в котором принимают участие данные реакции.
- Б. Представьте в виде схемы цпэ путь водорода от дегидрируемого субстрата к кислороду.
- Динитрофенол пытались использовать для борьбы с ожирением.
- Ингибирование ферментов ЦПЭ.
- Увеличение концентрации субстрата активирует энзим.
- Б. Опишите особенности протекания данной реакции, объясните ее значение.
- В. Рассчитайте коэффициент окислительного фосфорилирования для данной реакции.
- В. Объясните причину глубоких нарушений энергетического обмена у людей с генетическим дефектом пируваткарбоксилазы.
- В. Определите, какое количество атф может синтезироваться за счет данной реакции. Ответ поясните.
- Витамин N - липоевая кислота.
- С. Назовите витамины, входящие в состав данных коферментов. Опишите функции коферментов.
- А. Анаболические функции цитратного цикла.
- Б. Опишите ферментные механизмы защиты клетки от данных повреждений
- В. Укажите последствия накопления лактата в крови.
- В. Опишите процесс, в котором участвует фермент гликогенсинтетаза.
- В. Опишите процесс глюконеогенеза.
- В. Опишите процесс, в котором участвует фермент фосфорилаза.
- В. Опишите процесс, в котором участвует фермент глюкозо-6-фосфатаза.
- Г. Укажите биологическое значение ПФП.
- Г. В каких органах и тканях происходит анаэробный гликолиз?
- В. Опишите другие особенности метаболизма глюкозы в эритроцитах?
- В. Используя метаболическую карту, опишите химическую реакцию, которая повреждена при дефекте этого фермента. Опишите дальнейшую судьбу продуктов гидролиза.
- В. Почему снижение концентрации глюкозы в крови сопровождается, прежде всего, нарушением деятельности мозга?
- В. Опишите значение анаэробного гликолиза и механизм синтеза атф.
- Б. Объясните механизмы переключения аэробного гликолиза на анаэробный и наоборот.
- В. Объясните возможные причины изменения концентраций лактата и глюкозы в крови в данной ситуации.
- А. Назовите дефектные ферменты?
- В. Дайте общую характеристику этому процессу.
- I. 4. Модуль 4. Обмен и функции липидов
- Б. Какое вещество создает оптимум рн для этого фермента. Где оно образуется.
- В. Опишите, используя метаболические карты, реакцию, которую катализирует данный фермент.
- В. Опишите этапы ассимиляции пищевых жиров в организме человека.
- Окисление насыщенных и ненасыщенных жирных кислот отличается.
- В. К каким последствиям может привести резкое повышение уровня кетоновых тел в крови.
По химическому строению липоевая кислота является тиопроизводным валериановой кислоты, способным легко подвергаться окислительно-восстановительным превращениям. Липоевая кислота является коферментом (одним из пяти) пируват – и α- кетоглутарат- дегидрогеназ. Эти мультиферменты осуществляют реакции окислительного декарбоксилирования названных кетокислот. Липоевая кислота – идеальный антиоксидант. Обнаружена её высокая эффективность в защите организма от повреждающего действия радиации и токсинов. Она устраняет свободные радикалы, образующиеся при окислении пирувата в митохондриях, реактивирует другие антиоксиданты – витамины Е и С, а также тиоредоксин и глутатион (глутатион-SH – трипептид, наряду с аскорбатом он является основным водорастворимым антиоксидантом клетки). Липоевая кислота предохраняет от перекисной модификации атерогенные липопротеины (ЛПНП). Синергичное действие липоевой кислоты с витаминами Е и С является мощной протекцией атеросклероза. · Липоевая кислота увеличивает эффективность утилизации глюкозы клетками (путём влияния на белок-транспортёр глюкозы Т1), ингибирует деградацию инсулина, снижает уровень гликозилирования белков– отсюда понятна эффективность применения липоевой кислоты при сахарном диабете. Пищевые источники: наиболее богаты липоевой кислотой дрожжи, мясные продукты, молоко. Суточная потребность предположительно 1-2 мг.
ТДФ Тиаминдифосфат, соединяясь со специфическими белками и металлами, образует тиаминпротеиды (тиаминовые ферменты), которые и осуществляют биокаталитические функции. Связь кофермента с апоферментом достаточно прочна. При воздействии тиаминовых ферментов на субстраты происходит разрыв и образование С--С-связей в различных группах: между карбонилом и карбоксилом --СО--СООН, между карбонилом и вторичной гидроксильной группой --СО--СНОН-- (разрыв и синтез б-кетола).Тиаминовые ферменты и их системы принимают участие в углеводном обмене, который в свою очередь через низкомолекулярные органические кислоты (окислительный цикл трикарбоновых кислот и другие обменные реакции) находится во взаимосвязи с обменом жиров и аминокислот в животном организме.Тиаминдифосфат в составе ферментных систем осуществляет следующие реакции:
· декарбоксилирование β-кетокислот с образованием альдегидов (реакция б-расщепления);
· окислительное декарбоксилирование б-кетокислот с образованием кислот (реакция б-расщепления); НАД входит в состав ряда дегидрогеназ — ферментов большинства окислительно-восстановительных реакций. Он обладает способностью переносить электроны и протоны от окисляемого субстрата к другому акцептору.
ФАД также является коферментом ферментов, участвующих в окислительно-восстановительных процессах. В составе флавиновых ферментов ФАД участвует в многочисленных окислительно-восстановительных реакциях в клетках:
1) участвует в переносе электронов и протонов в дыхательной цепи;
2) в составе пируватдегидрогеназ и α-кетоглутаратдегидрогеназ участвует в окислительном декарбоксилировании пирувата и α-кетоглутарата;
3) участвует в окислении жирных кислот в митохондриях;
4) важная роль флавиновых дегидрогеназ заключается в обеспечении клеток энергией.
НS-КоА принимает участие в переносе и активации кислотных остатков в реакциях ацилирования, конденсации, оксидоредукции или гидратации органических кислот. Кофермент А участвует в ферментативных реакциях, катализирующих как активирование, так и перенос ацетильного радикала СН3СО; также КоА активирует и переносит также другие кислотные остатки (ацилы). Кроме того, коэнзим А участвует в клеточном дыхании, биосинтезе и окислении жирных кислот, синтезе стероидов.
Липоевая кислота входит в мультиферментные комплексы, осуществляющие декарбоксилирование α -кетокислот (пировиноградной, α -кетоглутаровой кислот). Выполняет роль промежуточного акцептора водорода и кислотных остатков за счет своей способности к обратимому восстановлению (переход S—SàSH).
В. Конечным акцептором водорода в этой реакции является НАД, т.е. образуется НАДН2. При окислении НАДН2 в дыхательной цепи образуется 3АТФ.
НАДН2 QH2 цитохром с 1/2 О2 Н2О.
| Цитохром-С-редуктаза
(АТФ)
| | | Цитохром-С-оксидаза (а, а3)
(АТФ)
| |
Если донором водорода для дыхательной цепи является молекула НАДН, то электроны от донора (НАДН) к акцептору (кислород) проходят 3 участка сопряжения окисления и фосфорилирования (I, III и IV ферментные комплексы дыхательной цепи). Таким образом, максимально может образоваться 3 молекулы АТФ (3 АДФ + 3 Н3РО4 → 3 АТФ). Затрачивается 1 атом кислорода (2 Н + О → Н2О). Значение коэффициента Р/О = 3/1 = 3
65
|