Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные способы соединения звеньев

Поиск

 

Структурные схемы

При анализе и синтезе систем автоматического управления широко используется структурный анализ, в основу которого лежат положения.

1. Структурная схема является графическим изображением дифференциального уравнения объекта и обладает наглядностью.

2. Элементы структурной схемы изображают в виде прямоугольников, внутри которых записывают передаточную функцию звена.

3. Взаимосвязь между звеньями изображается линиями связи со стрелками, указывающими направление передачи сигнала.

4. Точка, в которой разветвляются линии связи, называется узлом.

5. Операция алгебраического сложения нескольких сигналов изображается в виде круга на линии связи и называется сумматором.

Составление структурной схемы является одним из первых этапов исследования сложных объектов, схема может быть составлена на основании математического описания, или исходя из физической модели объекта. В структурной схеме присутствуют только три типа соединений: параллельное, последовательное и с обратной связью. Все сложные структурные схемы являются комбинациями этих типов соединений.

Для изображения основных элементов структурных схем используют условные обозначения, представленные на рис. 9.1.

Рис. 9.1 Условные обозначения элементов структурной схемы

Параллельное соединение звеньев

При параллельном соединении (рис. 9.2) сигналы входа всех звеньев одинаковы и равны сигналу входа системы x (t), а выход y (t) равен сумме сигналов выходов звеньев. Для каждого звена можно записать

y 1(s)= x (s) W 1(s); y 2(s)= x (s) W 2(s); …; yn (s)= x (s) Wn (s),

тогда выход всей системы

y (s)= y 1(s)+ y 2(s)+…+ yn (s)= x (s)[ W 1(s)+ W 2(s)+…+ Wn (s)]= x (s) ,

откуда передаточная функция параллельного соединения

.                                  (9.1)

Рис. 9.2. Параллельное соединение звеньев

Передаточная функция системы параллельно соединенных звеньев равна сумме передаточных функций отдельных звеньев.

Переходная функция параллельного соединения равна сумме переходных функций отдельных звеньев.

.                         (9.2)

Частотные характеристики параллельного соединения получают следующим образом:

              (9.3)

АФХ параллельного соединения получают сложением действительных и мнимых частей АФХ отдельных звеньев или по правилу сложения векторов. На рис. 9.3 приведен пример получения AФX двух параллельно соединенных звеньев, выполненный по правилу сложения векторов.

Рис. 9.3. Построение АФХ параллельного соединения: а) АФХ первого звена;

б) АФХ второго звена; в) АФХ параллельного соединения звеньев



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 92; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.218.134 (0.008 с.)