Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Условия сведения экономической задачи к задаче оптимизацииСодержание книги
Поиск на нашем сайте
Система рассмотренных выше предпосылок или условий формулировки экономических проблем как задач на оптимум при всей её кажущейся естественности и универсальности обладает существенной неполнотой. Даже если в системе выбора экономического решения объективно существует единая цель деятельности, ограниченность и взаимозаменяемость средств её достижения, такая система может быть сведена к задаче оптимизации лишь при выполнении ещё трёх важных условий: - условие полной рационализации – цель деятельности осознаётся с высокой степенью конкретности как единая количественно измеримая категория; - условие всестороннего знания – все альтернативные возможности достижения целей заранее известны и хорошо описаны, остаётся лишь сравнить и оценить их; - условие безграничности вычислительных возможностей – ресурсы, предназначенные для реализации самого процесса исследования по отысканию наилучшего решения (мощность ЭВМ, численность групп специалистов, срок выдачи рекомендаций и др.), не лимитируют возможности получения этого решения. Очевидно, далеко не все экономические проблемы, для которых выполняются первые три предпосылки, формулируются в условиях выполнения последних трёх предпосылок. Эти дополнительные требования выполняются лишь для хорошо стуктуризованных проблем, не испытывающих существенного влияния неполноты информации. Именно этот класс проблем может быть сведён к задачам математического программирования. Применительно к общей модели математического программирования функция gi (x) должна быть известна, то есть зависимость расхода или выпуска ресурса i -го вида от переменных должна быть известна. Величина bi есть наличие или возможность получения ресурса i -го вида и должна быть задана. В каждом из ограничений вида gi (x) £ bi может иметь место в принципе любой из знаков £, =, ³. Ограничение вида gi (x) ³. bi может быть приведено к каноническому (классическому) виду следующим образом: - gi (x) £ - bi. Различные ограничения могут иметь различные знаки. Соотношение между числом неизвестных n и числом ограничений m может быть любым: m < n; m = n; m > n. Когда m = 0, то ищется максимум или минимум целевой функции без ограничений, т. е. решается задача на нахождение безусловного экстремума. На переменные могут дополнительно накладываться следующие ограничения: а) некоторые или все переменные должны быть неотрицательными, то есть xj ³0 (j = 1,2, …, n 1 ), где n 1£ n; б) некоторые или все переменные могут принимать лишь дискретные (например, целочисленные) значения. Эти дополнительные ограничения довольно типичны для экономических ситуаций (раскройная задача, станковая задача, причём в последней число станков может быть только целым числом). В зависимости от конкретизации общей задачи математического программирования вычислительные методы поиска оптимальных решений зависят от того, в какую основную группу экономических задач оптимизации попадёт соответствующая задача. Ранее мы уже привели классификацию этих задач на линейные и нелинейные задачи. Если принять, что
где а ij и cj – заданные величины, то получим общую задачу линейного программирования, которая формулируется следующим образом. Необходимо найти n неотрицательных переменных xj, максимизирующих (или минимизирующих) линейную целевую функцию (4.1) и удовлетворяющих ограничениям (4.2), (4.3). Для этих задач разработан целый ряд эффективных методов, алгоритмов и программ, основным из которых является симплекс-метод. Все другие задачи, имеющие целевую функцию и ограничения, отличающиеся от (4.1), (4.2) и (4.3), кроме задач, в которых предполагается целочисленность переменных, принято считать нелинейными.
|
||||||||||
Последнее изменение этой страницы: 2021-12-15; просмотров: 39; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.91.59 (0.007 с.) |