Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Структура и свойства основных пищевых углеводов. Биологическая роль углеводов ворганизме человека.↑ Стр 1 из 14Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Структура и свойства основных пищевых углеводов. Биологическая роль углеводов ворганизме человека. В основном углеводы выполняют энергетическую функцию. Главными источниками энергии являются глюкоза и гликоген. Кроме того, из углеводов могут синтезироваться липиды, некоторые аминокислоты, пентозы. Углеводы входят как составная часть в структурно-функциональные компоненты клетки - гликолипиды и гликопротеины. Углеводы - это альдегидоспирты или кетоспирты и их производные. Классификация углеводов По современной классификации углеводы делятся на три основные группы: моносахариды, олигосахариды и полисахариды. Основные углеводы в организме человека Основным природным углеводом является глюкоза, которая может находиться как в свободном виде (моносахарид), так и в составе олигосахаридов (сахароза, лактоза и др.) и полисахаридов (клетчатка, крахмал, гликоген). Другим углеводом, типичным для человека и высших животных, является гликоген. Состоит гликоген из сильно разветвленных молекул большого размера, содержащих десятки тысяч остатков глюкозы. Гликоген является запасной, резервной формой глюкозы. Основные запасы гликогена сосредоточены в печени (до 5-6 % от массы печени) и в мышцах (до 2-3 % от их массы). Глюкоза и гликоген в организме выполняют энергетическую функцию, являясь главными источниками энергии для всех клеток организма. Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энергетическую (главный вид клеточного топлива), структурную (обязательный компонент большинства внутриклеточных структур) и защитную (участие углеводных компонентов иммуноглобулинов в поддержании иммунитета). Нейро-гуморальная регуляция обмена гликогена в печени: молекулярные механизмы действия глюкагона, адреналина и инсулина. Процессы синтеза и распада гликогена в печени одновременно протекать не могут. Переключение с одного пути на другой зависит от потребности организмав глюкозе и регулируется тремя гормонами: адреналином, глюкагоном и инсулином. Цель регуляции скоростей синтеза и распада гликогена заключается в обеспечении постоянства уровня глюкоземии и поэтому первичнымсигналом для включения того иного механизма является изменение содержания глюкозы в крови.
При гипоглюкоземии (наблюдаемой в постабсорбтивный период) - клетки поджелудочной железы выделяют глюкагон, который через ц-АМФзависимый механизм активирует распад гликогена и содержание глюкозы в крови повышается. Аналогичная картина наблюдается при стрессовой ситуации и при физической работе за счёт выделения адреналина (при этомадреналин оказывает влияние на распад гликогена не только в печени, но и в мышцах).Одновременно под действием этих гормонов понижается интенсивность биосинтеза гликогена При высокой концентрации глюкозы в крови (например. После приёма пищи) β-клетки поджелудочной железы выделяют инсулин, что приводит, наоборот, к усилению биосинтеза гликогена и снижению скорости его распада. Инсулин - индуцирует синтез глюкокиназы; - активирует фосфатазу гликогенсинтезы и гликогенфосфорилазы, при этомпервая переходит в активное состояние, а вторая инактивируется; - активирует фосфодиэстеразу, разрушающуюцАМФ, что прерывает действие адреналина и глюкагона. Ключевые ферменты пентозофосфатного пути окисления глюкозы. Биологическая роль этого пути метаболизма. Основные механизмы регуляции этого пути метаболитами (глюкозо-6- фосфатом) и гормонами (инсулин, адреналин, норадреналин). ПЕНТОЗОФОСФАТНЫЙ ПУТЬ Пентозофосфатный путь (ПФП) обмена углеводов нередко называют апотомическим путём, так как обмен глюкозы идёт по первому (С1) атому углерода. Доля пентозофосфатного пути в количественном превращении глюкозы в клетках обычно невелика (в большинстве клеток не более 10 %) и варьирует в зависимости от типа ткани и её функ-ционального состояния. Так, в клетках печени по этому пути превращается до 20 % глюкозы, в эритроцитах — 7 %, в клетках мозга — около 2 %. Этот процесс идет в клетках многих органов и тканей. Ферменты пентозофосфатного пути локализованы в цитоплазме клеток. Превращение глюкозы по пентозофосфатному пути не требует присутствия кислорода. Если по ПФП превращается шесть молекул Гл-6-Ф, то за один цикл молекула Гл-6-Ф катаболизирует до 6 СО2. Суммарное уравнение:
6 Гл-6-Ф + 7H2O + 12 НАДФ+ 5 Гл-6-Ф + 6СО2 + 12 НАДФН.Н+ + ФН Последовательность реакций пентозофосфатного пути разделяют на два этапа: I. Окислительный этап. На этом этапе осуществляются две дегидрогеназные реакции и одна реакция декарбоксилирования с образованием рибозо-5-фосфата и восстановлением двух молекул НАДФ+ (2 НАДФ+ → 2 НАДФН.Н+) Реакции: Таким образом, при окислении молекулы глюкозы образуется 2 НАДФН.Н+ и рибозо-5-фосфат. В некоторых клетках катаболизм глюкозы на этом и заканчивается. Ключевые ферменты: 1) глюкозо-6-фосфатдегидрогеназа — главный ключевой фермент; 2) 6-фосфоглюконатдегидрогеназа. Значение окислительного этапа: 1. Главный поставщик рибозо-5-фосфата для биосинтетических процессов: o биосинтез мононуклеотидов (АМФ, ГМФ, УМФ, ЦМФ, ТМФ и др.); o синтез нуклеиновых кислот (ДНК, РНК); o синтез коферментов (НАД+, НАДФ+, ФАД, КоА-SН). 2. Основной источник НАДФН.Н+ в клетках. ПФП на 50 % обеспечивает потребности клетки в НАДФН.Н+. НАДФН.Н+ в клетках используется: 1) в реакциях биосинтеза веществ как восстановитель: • o синтез жирных кислот; o биосинтез холестерола, стероидных гормонов, желчных кислот; o синтез заменимых аминокислот (НАДФН•Н+ как кофермент глутаматдегидрогеназы в реакциях восстановительного аминированияα-кетоглутаровой кислоты); o в глюкуроновом пути и др. 2) в обезвреживании веществ: в реакциях гидроксилирования различных ксенобиотиков, лекарственных веществ, этанола и других веществ, которые осуществляются с участием микросомной цитР450-зависимой системы окисления; 3) как антиоксидант: используется на восстановление окисленногоглутатиона. Глутатион — важного антиоксиданта клеток; 4) в фагоцитозе: генерирование активных форм кислорода. Фагоциты с использованием НАДФН.Н+ генерируют супероксидные анион-радикалы, выполняющие основную роль в разрушении поглощённых бактериальных клеток. При недостаточной продукции НАДФН.Н+ при нарушении ПФП отмечается хроническое течение инфекционных заболеваний. Интенсивность протекания реакций ПФП зависит от потребности клеток в продуктах реакций и различается в разных тканях. Реакции окислительного этапа активно протекают в клетках печени, жировой ткани, эмбриональной ткани, в коре надпочечников, щитовидной железе, половых железах, лактирующей молочной железе, костном мозге, эритроцитах. II. Неокислительный этап (этап межмолекулярных перегруппировок). На этом этапе происходят взаимопревращения сахаров (фосфотриоз, фосфотетроз, фосфопентоз, фосфогексоз, фосфогептулоз, фосфооктулоз), в результате которых регенерирует глюкозо-6-фосфат. Два основных фермента катализируют превращения на неокислительном этапе: 1) транскетолаза катализирует перенос двухуглеродных фрагментов. В качестве кофермента использует тиаминпирофосфат; 2) трансальдолаза катализирует перенос трёхуглеродных фрагментов. Варианты неокислительных превращений: • классический или F-вариант (от англ. fat — жир) — осуществляется в клетках жировой ткани; • октулозный или L-вариант (от англ. liver — печень) — осуществляется в клетках печени и других тканей. Реакции (L-вариант): Итак, на неокислительном этапе невостребованные в клетках пентозофосфаты в результате межмолекулярных перегруппировок превращаются в Гл-6-Ф, а также образуются Фр-6-Ф и 3-ФГА. Все реакции неокислительного этапа обратимы.
На неокислительном этапе ПФП связан с гликолизом (посредством Гл-6-Ф, Фр-6-Ф и 3-ФГА), то есть возможно переключение этих процессов. Значение неокислительного этапа: 1. Стабилизирует концентрацию фосфопентоз в клетке, то есть утилизирует лишниефосфопентозы. Благодаря связи с гликолизом лишние пентозы катаболизируют по гликолитическому пути, давая клеткам энергию. 2. Синтез фосфопентоз в клетке при торможении окислительного этапа благодаря обратимости реакций неокислительного превращения. Регуляция пентозофосфатного пути, в основном, осуществляется на уровне дегидрогеназ. Инсулин индуцирует синтез глюкозо-6-фосфатдегидрогеназы, 6-фосфоглюконат-дегидрогеназы. Жирные кислоты — аллостерические ингибиторы глюкозо-6-фосфат-дегидрогеназы. Увеличение уровня НАДФН.Н+ в клетке тормозит окисление глюкозы по ПФП. Структура и свойства основных пищевых углеводов. Биологическая роль углеводов ворганизме человека. В основном углеводы выполняют энергетическую функцию. Главными источниками энергии являются глюкоза и гликоген. Кроме того, из углеводов могут синтезироваться липиды, некоторые аминокислоты, пентозы. Углеводы входят как составная часть в структурно-функциональные компоненты клетки - гликолипиды и гликопротеины. Углеводы - это альдегидоспирты или кетоспирты и их производные. Классификация углеводов По современной классификации углеводы делятся на три основные группы: моносахариды, олигосахариды и полисахариды. Основные углеводы в организме человека Основным природным углеводом является глюкоза, которая может находиться как в свободном виде (моносахарид), так и в составе олигосахаридов (сахароза, лактоза и др.) и полисахаридов (клетчатка, крахмал, гликоген). Другим углеводом, типичным для человека и высших животных, является гликоген. Состоит гликоген из сильно разветвленных молекул большого размера, содержащих десятки тысяч остатков глюкозы. Гликоген является запасной, резервной формой глюкозы. Основные запасы гликогена сосредоточены в печени (до 5-6 % от массы печени) и в мышцах (до 2-3 % от их массы). Глюкоза и гликоген в организме выполняют энергетическую функцию, являясь главными источниками энергии для всех клеток организма. Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энергетическую (главный вид клеточного топлива), структурную (обязательный компонент большинства внутриклеточных структур) и защитную (участие углеводных компонентов иммуноглобулинов в поддержании иммунитета).
|
||||||||
Последнее изменение этой страницы: 2021-12-07; просмотров: 437; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.105.222 (0.01 с.) |