Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вимірювання опору провідників містковою схемою.↑ Стр 1 из 15Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
ЕЛЕКТРИКА
Лабораторна робота № 25. Дослідження потужності і ККД електродвигуна за допомогою стрічкового гальма. Прилади і приладдя: електродвигун, стрічкове гальмо з динамометром, лічильник обертів, електросекундомір, вольтметр на 300 В, амперметр на 1А, штангенциркуль. Мета роботи: засвоїти один із методів вимірювання характеристик електродвигуна.
Коротка теорія та метод вимірювань
Потужність електродвигуна може бути обчислена за формулою P = A / t, (1) де A = F S (2) - робота долання сили тертя F; S - шлях, на якому діє сила тертя. Силу тертя F, що долається двигуном, можна знайти за різницею сил натягів F1і F2 розгалужень гальмівної стрічки, які визначаються динамометром при натягу стрічкового гальма F = F1- F2 (3) Якщо радіус шківа дорівнює r, число обертів двигуна є N, то шлях S знаходять за співвідношенням S = 2π r N. (4) З урахуванням співвідношень (2) – (4) із (1) одержуємо потужність електродвигуна на валі: P = 2π r N (F2 – F1) / t (5) Потужність споживаного струму визначається величиною сили струму в двигуні і напругою на ньому: P = I U, (6) де I - сила струму, U - напруга на двигуні. Коефіцієнт корисної дії знайдемо як відношення потужності двигуна на валі до потужності струму, що споживається: η = P / PT. (7)
Порядок виконання роботи:
1. Зберіть коло згідно зі схемою (рис.1). Виміряйте штангенциркулем радіус шківа r. Рис. 1. 2. Закріпіть планку з динамометром в прорізі стояка таким чином, щоб динамометри давали рівні показання F/1 і F//2 = 1H. 3. Увімкніть електродвигун. В результаті цього динамометри дадуть різні показання F1 і F2. Запишіть їх в таблицю і визначте силу тертя F = F1 – F2. 4. Визначте за вольтметром і амперметром напругу U і силу споживаного струму I і занесіть результати відліків до таблиці. 5. Спостерігаючи за лічильником обертів, помітьте момент співпадання поділки шкали лічильника з 1000 або 2000 обертів, включіть секундомір, визначте його показання під час роботи двигуна та виключіть двигун. 6. Не вмикаючи двигуна, підніміть динамометри вище і збільшіть натяг стрічкового гальма на 0,5H. Знову проведіть виміри. 7. Збільшуючи натяг стрічкового гальма через 0,5H, повторіть дослід 4 рази. Результати дослідів занесіть до таблиці. За формулами (5) – (7) визначте шукані величини.
Дайте відповідь на запитання: 1. На якому явищі грунтується робота електродвигуна? 2. Яка частина електричної енергії йде на нагрівання обмотки? 3. Чому при надто великому навантаженні двигун може вийте з ладу? 4. Побудуйте за даними таблиці залежність ККД від потужності електродвигуна.
Лабораторна робота № 27. Градуювання термоелемента. Прилади та приладдя: термопари, гальванометр, дві посудини з водою, електронагрівач. Мета роботи: засвоїти метод вимірювання температури за допомогою термопари.
Коротка теорія та метод вимірювань
Майже вільні електрони, що знаходяться у металі в стані хаотичного руху, утримуються всередині металу електричними силами. Для виходу електрона із металу треба затратити енергію і виконати за її рахунок роботу А, що зветься роботою виходу електрона із металу. Величина роботи виходу залежить від природи металу, а також його стану. При дотику двох різних металів електрони в результаті теплового руху переходять із одного металу в інший і зворотньо в різних кількостях. Кількість електронів, що перетинають межу розділу в одиницю часу, залежить від роботи виходу і концентрації електронів в одиниці об’єму - n. У різних металів величини A і n різні, тому перехід електронів через контактний шар відбувається в більшій кількості від металу з меншою роботою виходу і з більшою концентрацією вільних електронів. При цьому провідник з надлишком електронів набуває негативного потенціалу, а інший, що втратив частину електронів, - позитивного. Виникаюче і зростаюче при цьому електричне поле сповільнює процес переходу електронів від одного металу до іншого і призводить до рівноважнго стану, при якому потоки електронів в обох напрямках вирівнюються. Різниця потенціалів, що з’являється між металами, називається контактною різницею потенціалів. Величина її залежить від температури контакту. Якщо укласти замкнуте коло із двох спаяних кінцями (рис.1) різнорідних металів L і M, яке називають термопарою, то в місцях спаїв 1 і 2 виникнуть протилежні за знаком контактні різниці потенціалів. При однакових температурах спаїв (T1 – T2) сумарна різниця потенціалів дорівнює нулеві. А при наявності різниці температури сумарна різниця потенціалів відмінна від нуля. Нехай спай 1 витримується при температурі Т1, а спай 2 – при Т2 і нехай Т2 > Т1. Позначимо контактну різницю потенціалів у спаях 1 і 2 відповідно V1і V2. Тоді, враховуючи протилежність V1і V2. сумарне падіння напруги в колі можна подати як E = V1 – V2. (1) Подана співвідношенням (1) різниця потенціалів у даному випадку відмінна від нуля і носить назву термоелектрорушійної сили. Теоретичний розгляд явища термоелектрики в квантовій фізиці приводить до такого виразу для термоЕРС:
E = α (T1 – T2) (2) де α - так званий коефіцфіцієнт термоЕРС. Співвідношення (2) справедливе для термоелементів у деякому інтервалі різниці температур, тому що величина α слабо залежить від температури. У вузькому інтервалі температур можна знехтувати залежністю α від температури і вважати її сталою для даного термоелементу. В цьому випадку її звуть сталою термопари. Згідно з виразом (2) величина α визначається як термоЕРС, що виникає при різниці температур у 1 К. Тобто параметр α характеризує чутливість термоелемента до температури. При наявності термоЕРС в колі виникає термоелектричний струм I, величина якого визначається за законом Ома: I = E / (R + r), (3) де R - зовнішній опір кола; r - опір термопари. Як бачимо із (3), сила струму в гальванометрі пропорційна термоЕРС, а остання пропорційна різниці температур іі спаїв. На цій залежності грунтується термоелектричний метод вимірювання температури. Для цього термоелемент має бути заздалегідь проградуйованим. Результати градуювання зображують у вигляді графіка і у вигляді формули з відомим значенням α.
Порядок виконання роботи:
1. Зберіть установку за схемою (рис.1). Перевірте рівність температур води в посудинах. При рівності температур стрілка гальванометра має стояти на нулеві. 2. Увімкніть електронагрівач однієї з посудин. 3. За відхиленням стрілки гальванометра визначить струм у колі (ціна поділки вказана на приладі). Повільно нагрівайте воду в посудині та через 2 К записуйте значення відповідних струмів. Температуру не підвищуйте понад 90˚С. 4. Вимкніть електронагрівач і за формулою (3) визначте термоЕРС Е для одержаних значень струму I. Опір термопари r = 1,5 Ом. Значення R позначено на гальванометрі. 5. На основі дослідних даних побудуйте графік залежності E = f(ΔT). За нахилом графіка визначте величину α згідно з (2) як кутовий коефіцієнт нахилу графіка до осі температур.
Результати вимірювань і розрахунків подайте в таблиці:
Дайте відповіді на запитання:
1. Назвіть причини появлення контактної різниці потенціалів. 2. Які переваги і недоліки мають термоелементи в порівнянні зі звичайними термометрами? 3. Назвіть можливі застосування термоелементів у техніці, біології, сільському господарстві. 4. Чому при однакових температурах спаїв термоЕРС в колі відсутня?
Лабораторна робота № 28. Спільним емітером. Прилади та приладдя: установка для дослідження транзисторів, транзистор типу МП-40, джерело живлення на 3 і на 10 В. Мета роботи: дослідження роботи транзистора, ввімкненого за схемою з загальним емітером у статичному режимі. Коротка теорія і методика вимірювань Транзистор – триелектродний напівпровідниковий прилад, що має два взаємодіючі електронно-діркові переходи. В транзисторі за типом провідності чергуються три області напівпровідника: р-n-р або n-р-n. Принцип роботи їх однаковий. Розглянемо транзистор типу р-n-р (рис. 1). На схемі: 1 – емітерний р-n перехід; 2 – колекторний n-р перехід; Б – омічний контакт. Площа колекторного переходу Sк значно більша за площу емітерного переходу Se. Товщина бази складає від часток до кількох десятків мікрометрів. Концентрація домішок в базі невелика і значно менша за їх концентрацію в областях колектора і емітера. При вмиканні джерела напруги емітерного переходу Ue (джерело Uк вимкне- не) в область бази з боку емітера інжектуються дірки, які порушують електричну нейтральність бази, в результаті чого потенціал бази зростає. Це сприяє притоку електронів із зовнішнього кола, які нейтралізують позитивний заряд бази, зумовлений притоком дірок з боку емітера. В колі бази тече струм бази IБ, приблизно однаковий зі струмом емітера Ie - відкритий емітерний контакт. При одночасному ввімкнені джерела Ue і Uк картина суттєво змінюється. Дірки, що ввійшли до бази з боку емітера, спрямовуються до колекторного переходу, тому що поле для них є прискорюючим. Втягуючись полем колекторного переходу в область колектора, дірки зумовлюють колекторний струм, рекомбінуючи з електронами, що прийшли в область колектора із зовнішнього колекторного кола. Частка дірок (приблизно 0,1%) рекомбінують у базі, що сприяє притоку електронів із зовнішнього кола бази і визначає струм Iб. Отже, струм емітера дорівнює: Ie = Iк + Iб. (1) В загальному випадку рівність (1) може бути подана інакше: Iб = α Ie. (2) Коефіцієнт α < 1 називається коефіцієнтом передачі струму бази. Крім того, у кoлі колектора протікає зворотний струм колектора Iко, співпадаючий за напрямком зі струмом Iк. Таким чином, остаточно одержуємо Iк = α Ie + Iко. (3) Розрізняють три схеми вмикання транзистора: зі спільною базою (СБ), зі спільним колектором (СК) і зі спільним емітером (СЕ). Найбільш поширеною є схема зі спільним емітером (рис. 2), яка й досліджується в даній роботі. В цій схемі спільною точкою вхідного та вихідного кола є емітер, що й зумовило назву схеми. Основним параметром схеми є коефіцієнт підсилення струму β, який визначається співвідношенням β = Iк / Iб = Iк / (Ie - Iк ) = α / (1 - α), (4) де α = Iк / Ie визначено співвідношенням (2). Крім коефіцієнта передачі струму, для розрахунків схем на транзисторах треба мати статичні характеристики. Cтатичною вхідною характеристикою є залежність струму бази Iб від напруги між базою та емітером при сталій напрузі між колектором та емітером, тобто Iб = f (Uвх) при Uвх=сonst. Типовий вигляд цих характеристик при різних напругах Uвх = 0, 2, 5, 8 В показано на рис.3. Статичною вихідною характеристикою схеми є залежність струму колектора Iк від напруги між колектором та емітером Uвих при сталому струмі бази, тобто Iк = f (Uвих) при Iб = const. Вигляд цих характеристик подано на рис. 3 для різних струмів Iб = 0, 20, 40, 60, 80 мкВ.
Порядок виконання роботи: 1. Ознайомтеся з установкою. Зберіть коло досліджень згідно зі схемою (Рис. 4) і отримайте дозвіл викладача на виконання вимірювань. 2. Зніміть експериментальні дані для побудови статичної вхідної характеристики Iб = f (Uвх) при Uвих = 0. Для цього потенціометри R1 і R2 виведіть в крайнє положення, щоб U1 = U2 = 0. Зробіть перший відлік струму бази Iб за мікроамперметром мкА. Залишаючи U2 = 0, змінюйте за допомогою потенціометра R1 напругу між емітером та базою транзистора U1=Uвх, згідно з табл.1, і записуйте величину струму бази за показаннями мікроамперметра. Одержані значення струму бази занесіть до табл. 1. 3. Одержіть експериментальні дані для побудови статичної вхідної характеристики Iб = f (Uвх) при Uвих = 5 В. Для цього потенціометр R1 виведіть в крайне положення U1 = Uвх = 0, і за допомогою потенціометра R2 установіть напругу між емітером та колектором Uвих = U2 = 5 В. Змінюючи потенціометром R1 напругу між базою та емітером, згідно з табл. 1, зробіть відлік струму бази за мікроамперметром. Рис.4. Дані експерименту занесіть до таблиці 1. Таблиця 1.
4. На міліметровому папері побудуйте дві статичні характеристики Iб=f(Uвх) при Uвих = 0 та Uвих = 5 В. Завдання 2. 5. Отримайте експериментальні дані для побудови сімейства статичних вихідних характеристик Iк=f(Uвих) при Iб=const. З цією метою встановіть почергово Iб =50, 200, 300 мкА, у відповідності з табл. 2 змінюйте потенціометром R2 напругу між колектором і емітером Uвих=U2 і робіть відліки колекторного струму Iк за міліамперметром. Одержані значення струму колектора занесіть до табл. 2. Таблиця 2.
6. За експериментальними даними табл. 2 побудуйте на міліметровому папері сімейство статичних вихідних характеристик.
Дайте відповіді на запитання: 1. Що називають транзистором? 2. Який вигляд мають статичні вхідні та вихідні характеристики? 3. Як працює транзистор р-n-р-типу?
Лабораторна робота № 32. ОПТИКА ТА ФІЗИКА АТОМА Лабороторна робота № 38. ЕЛЕКТРИКА
Лабораторна робота № 25. Вимірювання опору провідників містковою схемою. Прилади та приладдя: калібровані опори (декади опорів), гальванометр, шунтуючий резистор з вимикачем, магазин опорів, джерело постійного струму (акумуляторна батарея), вимикач, вимірювальні опори. Мета роботи: засвоїти метод вимірювання опорук із застосуванням схеми мосту постійного струму (міст Уітстона).
Коротка теорія і метод вимірювань
Електричним струмом називається спрямований рух електричних зарядів. Необхідною умовою існування електричного струму є наявність напруги або різниці потенціалів на кінцях провідника. Напруга на даній ділянці кола дорівнює сумі різниці потенціалів і електрорушійної сили (ЕРС), що діє на даній ділянці кола. У відсутності останньої напруга співпадає з різницею потенціалів на кінцях ділянки кола. Сила струму I, згідно з законом Ома, пропорційна напрузі U на даній ділянці кола і обернено пропорційна її опорові R: I = U / R. (1) Електричний опір провідника R зумовлений гальмуванням носіїв електрики за допомогою їх зіткнень з коливаннями іонів у кристалічній гратці металу. Опір провідника R залежить від матеріалу провідника, від його довжини та площі поперечного перетину і температури. Для визначення опору провідників існують методи, найточнішим із яких є міст постійного струму (місток Уітстона). Принципова схема містка подана на рис.1. Вимірювальний опір RX та три інших змінних опори (R0 - магазин опорів, та R1, R2-калібрувальні опори) з’єд’ують так, що вони утворюють замкнутий чотирикутник ACBD. В одну діагональ чотирикутника увімкнуто гальванометр (ця ділянка і є містком), а в іншу через вимикач - джерело постійного струму з ЕРС Е. При замиканні кола гальванометр покаже наявність струму на ділянці CD. Проте можна підібрати опори R0, R1 та R2 такі, що потенціали точок C і D стануть рівними. Тоді струм в колі гальванометра відсутній (при замиканні ключа К стрілка гальванометра залишається на нульовій поділці). Оскільки у розгалужень AC і AD точка A спільна, а потенціали точок C і D однакові, то беручи до уваги, що в цих ділянках відсутні ЕРС, падіння напруг на них при цьому будуть, згідно з (1), однакові. Те ж саме справедливе і для розгалужень CB і DB: I0 R0 = I1 R1; IX RX = I2 R2. (2)
Рис. 1. Оскільки в ділянці CD струм відсутній, то по ділянці CВ іде такий же струм, як і по АС, а в розгалуженні DB, як і в AD, тобто I0 = IX, I1 = I2. Поділивши рівняння (2) і скорочуючи, згідно останнім співвідношенням для струмів, значення струмів, одержимо основне співвідношення зрівноваженного мостика: R0 / RX = R1 /R2. (3) Звідки знаходимо шуканий опір RX: RX = R0 (R2 / R1) (4) Розглянутий метод можна застосовувати і для ланцюгів змінного струму. В розгалудженні АС можна розмістити, наприклад, замість R0 еталонний конденсатор або індуктивність, а в розгалуженні СВ - невідому ємність або індуктивність. Досягаючи зміною співвідношення R1 / R2 відсутності струму в містку CD, за відомим значенням еталонної величини можна знайти невідому. В даній роботі в ролі опору R0 виступає магазин опорів, в ролі опорів R1 і R2 - калібровані опори (декади).
Порядок виконання роботи:
1. Зберіть електричне коло згідно зі схемою (рис.1). Замість опору RX ввімкніть один з реостатів з невідомим опором R/ або R//. 2. Встановіть однакові значення калібрувальних опорів (декад) R1=R2. Замкнувши шунтуючий пристрій вимикачем К/, і коло батареї вимикачем К, підберіть опір R0 в магазині так, щоб струм в гальванометрі зник, тобто стрілка гальванометра стояла на нульовій поділці. Розімкніть шунтуючий пристрій і доможіться відсутності струму у містку. УВАГА! РОЗМИКАТИ ВИМИКАЧ ШУНТА ДОЗВОЛЯЄТЬСЯ ТІЛЬКИ ПІСЛЯ ГРУБОГО НАСТРОЮВАННЯ, ІНАКШЕ МОЖНА СПАЛИТИ ГАЛЬВАНОМЕТР. 3. Підставте значення опорів в (4) і знайдіть значення R/. 4. Замініть перший реостат R/ на другий R// і у відповідності з пунктами 1-3 визначте його опір. 5. Ввімкніть реостати R/ і R// спочатку послідовно, а потім – паралельно і виміряйте опори цих з’єднань згідно пп.1-3, одержуючи значення Rпс і Rпр. 6. За відомими формулами Rпс = R/ + R// та 1/Rпр = 1/ R/ + 1/ R// обчисліть опори послідовного і паралельного сполучення реостатів та занесіть значення їх до колонки RX таблиці: 7. Одержані дослідним шляхом результати Rпс і Rпр співставте з розрахованими значеннями і визначте їх відхилення. 8. За допомогою омметра виміряйте R/ і R// і результати запишіть в таблицю. Всі дані вимірювань і розрахунків подайте в таблиці.
Дайте відповіді на запитання: 1. Чому опори металів збільшуються при нагріванні? 2. Від чого залежить точність вимірювань опору містковим методом? 3. Чи зміняться умови рівноваги, якщо джерело і гальванометр поміняти місцями?
Лабораторна робота № 26.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-18; просмотров: 526; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.70.99 (0.014 с.) |