Регуляция минерального обмена 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Регуляция минерального обмена



Минеральный состав организма — одна из жестко контролируемых констант, что напрямую связано со способностью депонировать многие вещества и деятельностью выделительных органов, способных увеличивать или уменьшать содержание тех или иных элементов. К органам, депонирующим минеральные вещества, относятся костная ткань, кожа, печень, селезенка и др. Гипоталамус — сновной отдел головного мозга, ответственный за регуляцию минерального обмена. Специализированные осморецеп- торные и даже ионорецепторные нервные клетки при развитии изменений в минеральном составе крови или спинномозговой жидкости включают соответствующие рефлекторные механизмы, направленные на стабилизацию состава внутренней среды организма (рис. 11.3). При этом основную роль играют гормоны коры надпочечника — минералкортикоиды и гипоталамуса — ва- зопрессин и его аналоги. На содержание минеральных веществ оказывает существенное влияние функциональное состояние организма, пол, возраст, сезон года, климат и регион обитания. В период лактации у коров понижается концентрация кальция, фосфора, магния, а повышается — железа и марганца. В последний период стельности снижается содержание кальция, фосфора, магния, железа и марганца. Сезонные колебания минерального со-

Рис. 11.3. Схема регуляции баланса кальция

става у коров проявляются более высоким уровнем концентрации кальция, фосфора, магния, железа и меди осенью, а более низким — зимой и весной.

Минеральные вещества, наряду с витаминами и другими биологически активными веществами, являются обязательными элементами, обеспечивающими нормальное течение процессов жизнедеятельности организма. Они необходимы для поддержания постоянства внутренней среды организма, кислотно-щелочного равновесия, водно-солевого обмена и других функций. Потребность организма в минеральных веществах обычно покрывается поступлением с пищей (при рациональном сбалансированном питании). Однако при некоторых патологических состояниях, беременности, физических нагрузках, нарушениях электролитного баланса, погрешностях в питании требуются дополнительные количества минеральных веществ. Обеспечить поступление в организм необходимых количеств макро- и микроэлементов можно с помощью сбалансированного питания и вводимых в рацион содержащих их препаратов. Одни из них включают отдельные соединения (препараты железа, кальция, калия, магния, фтора и др.), другие — их набор, часто в комбинации с витаминами.

Макроэлементы ( кальций, фосфор, калий, натрий, магний )

Кальций и фосфор с точки зрения их значения в питании тесно связаны Они являются главными минеральными веществами и обуславливают структурную прочность костей и зубов. Кальций, кроме того, участвует в процессе свертывания крови и в передаче нервных импульсов. Уровень кальция в плазме крови является ключевым моментом для этих функций и регулируется очень тщательно. Фосфор также выполняет много функций (больше, чем какое-либо другое минеральное вещество), и для всеобъемлющего обсуждения метаболизма фосфора потребовалось бы рассмотреть чуть ли не все метаболические процессы организма. Фосфор входит в состав многих ферментативных систем, а также является компонентом так называемых "макроэргических" фосфорорганических соединений, которые отвечают, главным образом, за накопление и передачу энергии в организме.

Соотношение кальция и фосфора в рационе имеет огромное значение. Минимальное соотношение кальция и фосфора для роста и развития обычно принимается равным 1:1. Для взрослых животных соблюдение этого требования имеет не столь критическое значение. Hарушение этого соотношения, когда содержание кальция намного ниже содержания фосфора, приводит к заметному дефициту кальция, сказывающемуся на процессе формирования костей. Метаболизм кальция и фосфора тесно связан с витамином D, и этот вопрос будет рассматриваться в этой главе позднее.

Калий обнаружен в высоких концентрациях внутри клеток и необходим для передачи нервных импульсов, жидкостного баланса и мышечного метаболизма. Hедостаток калия вызывает мышечную вялость, замедление роста и заболевания сердца и почек. Калий широко распространен в пищевых продуктах, и в естественных условиях его дефицит встречается редко, однако потребность в калии связана с потреблением белка, поэтому необходима осторожность для того, чтобы гарантировать достаточное содержание калия в рационе, богатом белком.

В отличие от калия, натрий встречается, главным образом, во внеклеточной жидкости, но, как и калий, он имеет большое значение для нормальной физиологической активности. Вместе с хлором эти элементы представляют собой основные электролиты, растворенные в водной среде организма. Обычная соль (хлорид натрия) - это наиболее распространенная форма этих минеральных веществ, в которой они добавляются в пищу, поэтому пищевые рекомендации обычно выражаются в форме рекомендаций по содержанию в рационе хлорида натрия. Как и в случае калия, маловероятно, чтобы обычный корм содержал эти минеральные вещества в недостаточном количестве.

Магний обнаружен как в мягких тканях организма, так и в костях. Hормальное функционирование сердечной и скелетной мышц, а также нервной ткани зависит от правильного соотношения между кальцием и магнием. Магний также играет важную роль в метаболизме натрия и калия и ключевую роль во многих существенных ферментативных реакциях, в особенности тех, которые связаны с энергетическим обменом. Дефицит магния проявляется в мышечной вялости и, в тяжелых случаях, в судорогах. Тем не менее, недостаточное содержание магния в пище маловероятно.

Микроэлементы (кобальт, йод, мышьяк, медь, цинк и др.) необходимы организму, поскольку входят, как правило, в состав простетической группы многих ферментов.

Cреди веществ, играющих важную роль в питании животных, значительное место занимают микроэлементы, необходимые для роста и размножения. Они влияют на функции кроветворения, эндокринных желез, защитные реакции организма, микрофлору пищеварительного тракта, регулируют обмен веществ, участвуют в биосинтезе белка, проницаемости клеточных мембран и т.д.

Основной источник микроэлементов для животных - корма. Однако минеральный состав последних зависит от многих факторов. В связи с этим нередко наблюдается недостаток одних и избыток других элементов, что приводит к возникновению заболеваний, снижению продуктивности, плодовитости, ухудшению качества продукции и эффективности использования корма. Чтобы не допустить этого, используют различные соединения, однако их биологическая доступность неодинакова. Кроме того, технологические свойства солей микроэлементов существенно влияют на качество премиксов и комбикормов.

Точные механизмы извлечения железа из кормов и его абсорбции неизвестны. У животных комплексные соединения этого элемента под влиянием соляной кислоты и пепсина желудочного сока расщепляются, и трехвалентное железо, восстанавливаясь, переходит в двухвалентное. Образующиеся соли хорошо ионизируются и абсорбируются. Всасывание происходит в основном в двенадцатиперстной кишке и зависит от насыщения железом ферритина слизистой кишечника и трансферрина крови. Абсорбции железа способствуют редуцирующие вещества корма, или антиоксиданты: аскорбиновая кислота, токоферол, цистеин, глютатион. На усвоение железа сильно влияет рН содержимого желудка.

У взрослых особей недостаток железа встречается редко в связи с высоким содержанием его в растительных кормах, удовлетворительной усвояемостью и реутилизацией элемента в организме, хотя иногда железодефицитное состояние регистрируют и у высокопродуктивного скота. Анемия чаще проявляется у молодняка.

Основное место всасывания меди у животных - тонкий отдел кишечника и желудок. Это происходит не только в результате простой диффузии, но и путем активного продвижения микроэлемента через кишечную стенку и резко возрастает при его дефиците. В комплексе с аминокислотами, ди- и полипептидами медь усваивается лучше, чем в виде сульфата, причем с увеличением молекулярной массы комплексов абсорбция снижается. На усвоение меди влияют многие кормовые факторы, и прежде всего белок: повышение его уровня в рационе снижает отложение ее в печени. Пищевые белки защищают организм от медной интоксикации. Растительные, в состав которых входит фитиновая кислота, сильнее ингибируют всасывание, чем белки животного происхождения.

Величина переработанной меди также зависит от химической формы ее соединений в рационе. Аспартат меди оказывает большее влияние на рост молодняка птицы, чем метионинат и сульфат, причем органические соединения имеют и экологическое преимущество перед сернокислой солью (снижение дозировки).

Всасывание цинка происходит в основном в верхнем отделе тонкого кишечника. Высокий уровень протеина, добавки ЭДТА, лактозы, лизина, цистеина, глицина, гистидина, аскорбиновой и лимонной кислот повышают усвоение, а низкий уровень протеина и энергии, большое количество в корме клетчатки, фитата, кальция, фосфора, меди, железа, свинца ингибируют абсорбцию цинка. Кальций, магний и цинк при кислой среде тонкой кишки образуют прочный нерастворимый комплекс с фитиновой кислотой, из которого катионы не всасываются.

Марганец всасывается главным образом в двенадцатиперстной кишке. В растительных кормах он связан хелатирующими агентами, и процесс идет довольно слабо. Считают, что элемент усваивается в двухвалентной форме и конкурирует с железом и кобальтом за места абсорбции. Механизм всасывания еще не изучен. Избыток в рационе кальция, фосфора, железа, фитата снижает использование этого элемента, а добавки гистидина, ЭДТА, лимонной и аскорбиновой кислот повышают абсорбцию. Экскреция марганца с желчью и соком поджелудочной железы - более важный фактор в поддержании гомеостаза, чем интенсивность всасывания.

БД марганца для животных из сульфатов, хлоридов, оксидов, карбоната, перманганата калия довольно высокая, тогда как из руд и концентратов - низкая и зависит от вида минерала и степени его чистоты.

Кобальт поступает в организм животных с кормами и добавками, частично в виде витамина В12. Усвояемость элемента у них невелика (3-7%), поскольку потребность в нем небольшая и возрастает лишь при недостатке витамина В12 и отсутствии животных кормов в рационе. Кобальт всасывается в тонком отделе кишечника. Его БД из сульфатов, хлоридов, карбонатов хорошая, а из оксидов довольно слабая.

Йод животные получают с водой, воздухом, кормами и минеральными добавками. Йодистые соединения гормонального характера всасываются без расщепления. Остальные формы органического йода восстанавливаются до йодидов и поглощаются в таком виде. Абсорбция происходит в желудке, но главным образом в тонком кишечнике. Для растворимых неорганических соединений элемента характерно быстрое и полное всасывание при поступлении их через рот или путем ингаляции. Йодиды это делают более интенсивно, чем йод, связанный с аминокислотами. Особенно хорошо йод переходит из йодидов калия и натрия, йодатов кальция и калия, дийоддитиррола, пентакальцийортоперйодата и других соединений.

+Селен, поступающий из окружающей среды, всасывается в желудочно-кишечный тракт с кормами или добавками, а кроме того, через дыхательные пути и кожу. Усвоение селената подавляют близкие к нему по физико-химическим свойствам неорганические (сульфат, тиосульфат, молибдат, хромат) и органические (оксалат, оксалоацетат) анионы. Абсорбцию селена из селенита (но не из селената) стимулируют цистеин и глютатион, а ингибируют метионин и его аналоги.

Доказано, что для сохранения здоровья млекопитающие нуждаются в ряде других известных микроэлементов, хотя для домашних животных еще не установлены соответствующие специфические потребности. Hаблюдения за другими животными показали, что необходимые концентрации этих микроэлементов очень низки, поэтому вероятность возникновения дефицита любого из них при нормальном кормлении практически отсутствует. Hаоборот, как и в случае большинства микроэлементов, при употреблении в больших количествах все эти вещества токсичны, однако допустимые концентрации этих веществ варьируют в зависимости от элемента. Мышьяк, ванадий, фтор и молибден обладают наибольшей токсичностью, тогда как относительно высокие концентрации никеля и хрома могут потребляться без вредных последствий.

 

61. Обмен углеводов и жиров в организме с.х. животных. Регуляция углеводного и жирового обменов.



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 48; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.153.224 (0.012 с.)